DOI QR코드

DOI QR Code

Microstructure of Cu-Ag Filamentary Nanocomposite Wires Annealed at Different Temperatures

어닐링한 Cu-Ag 나노복합재 와이어의 미세조직

  • Kwak, Ho Yeon (Department of Nano Materials Engineering, Chungnam National University) ;
  • Hong, Sun Ig (Department of Nano Materials Engineering, Chungnam National University) ;
  • Lee, Kap Ho (Department of Nano Materials Engineering, Chungnam National University)
  • 곽호연 (충남대학교 공과대학 나노소재공학과) ;
  • 홍순익 (충남대학교 공과대학 나노소재공학과) ;
  • 이갑호 (충남대학교 공과대학 나노소재공학과)
  • Received : 2011.08.29
  • Published : 2011.12.25

Abstract

The microstructure of Cu-24 wt.%Ag filamentary nanocomposite fabricated by a thermo-mechanical process has been investigated by transmission electron microscopy (TEM) observations. This study is focused on the stability of Ag filaments formed by cold drawing; the effects of thermal treatment on the precipitation behavior and distribution of Ag-rich precipitates were also investigated. The Ag filaments elongated along the <111> orientation were observed in Cu-rich ${\alpha}$ phase of the as-drawn specimen and the copper matrix and the silver filament have a cube on cube orientation relationship. Annealing at temperatures lower than $200^{\circ}C$ for the as-drawn specimen caused insignificant change of the fibrous morphology but squiggly interfaces or local breaking of the elongated Ag filaments were easily observed with annealing at $300^{\circ}C$. When samples were annealed at $400^{\circ}C$, discontinuous precipitation was observed in supersaturated Cu solid solution. Ag precipitates with a thickness of 7-20 nm were observed along the <112> direction and the orientation relationship between the copper matrix and the Ag precipitates maintained the same orientation relationship in the as-drawn specimen. The interface between the copper matrix and the Ag precipitates is parallel to {111} and micro-twins were observed in the Ag precipitates.

Keywords

Acknowledgement

Supported by : 지식경제부

References

  1. J. T. Wood, J. D. Embury, and M. Ashby, Acta Mater. 45, 1099 (1997). https://doi.org/10.1016/S1359-6454(96)00220-0
  2. Y. Sakai, K. Inoue, T. Asano, H. Wada, and H. Maeda, Appl. Phys. Lett. 59, 2965 (1991). https://doi.org/10.1063/1.105813
  3. S. I. Hong, M. A. Hill, Y. Sasaki, J. T. Wood, and J. D. Embury, Acta Metall. Mater. 43, 3313 (1995). https://doi.org/10.1016/0956-7151(95)00050-6
  4. Y. Sakai and H. J. Schneider-Muntau, Acta Metall. Mater. 45, 1017 (1997). https://doi.org/10.1016/S1359-6454(96)00248-0
  5. A. Benghalem and D. G. Morris, Acta Mater. 45, 397 (1977).
  6. M.S. Lim, J. S. Song, and S. I. Hong, J. Mater. Sci. 35, 4557 (2000). https://doi.org/10.1023/A:1004876806313
  7. A. Gaganov, J. Freudendenberger, W. Grunberger, and L. Schultz, Z. Metallkd. 95, 425 (2004). https://doi.org/10.3139/146.017986
  8. W. Grunberger, M. Heilmaier, and Schultz: Physica, B 294-295, 643 (2001). https://doi.org/10.1016/S0921-4526(00)00735-3
  9. A. Gaganov, F. Freudenberger, E. Botcharova, and L. Schultz, Mater. Sci. Eng. A 437, 313 (2006). https://doi.org/10.1016/j.msea.2006.07.121
  10. J. Lin and L. Meng, J. Alloys Compd. 454, 150 (2008). https://doi.org/10.1016/j.jallcom.2006.12.073
  11. J. L. Murray, Metall. Mater. Trans. A 15, 261 (1984). https://doi.org/10.1007/BF02645110
  12. A. Benghalem and D. G. Morris, Acta Mater. 45, 397 (1997). https://doi.org/10.1016/S1359-6454(96)00152-8
  13. S. I. Hong and M. A. Hill, Acta Mater. 46, 4111 (1998). https://doi.org/10.1016/S1359-6454(98)00106-2
  14. S. I. Hong and M. A. Hill, Mater. Sci. Eng. A 264, 151 (1999). https://doi.org/10.1016/S0921-5093(98)01097-1
  15. H. J. Kwon and S. I. Hong, J. Alloys Compd. 327, 161 (2001). https://doi.org/10.1016/S0925-8388(01)01403-7
  16. S. Ohsaki, K. Yamazaki, and K Hono, Scr. Mater. 48, 1569 (2003). https://doi.org/10.1016/S1359-6462(03)00162-3
  17. L. Zhang and L. Meng, Mater. Lett. 58, 3888 (2004). https://doi.org/10.1016/j.matlet.2004.08.014
  18. K. Han, J. Embury, J. Petrovic, and G. Weatherly, Acta Meter. 46, 4691 (1998). https://doi.org/10.1016/S1359-6454(98)00135-9
  19. D. Y. Kim, K. H. Lee, and S. I. Hong, J. Kor. Inst. Met. & Mater. 41, 116 (2003).
  20. K. H. Lee and S. I. Hong, J. Mater. Res 18, 2194 (2003). https://doi.org/10.1557/JMR.2003.0306
  21. D. B. Knorr, H. Weiland, and J. A. Szpunar, JOM. 46, 32 (1994).
  22. H. J. Shin, H. T. Jeong, and D. N. Lee, Mater. Sci. Eng. A 279, 244 (2000). https://doi.org/10.1016/S0921-5093(99)00535-3
  23. P. Hirsch, A. Howie, R. B. Richolson, D. W. Pashley, and M. J. Whelan, Electron Microscopy of Thin Crystals, Robert E. Krieger, p.343, New York (1977).
  24. H. Bohm, Z. Metallkd. 52, 564 (1961).
  25. S. Spaic and M. Pristavec, Z. Metallkd. 88, 925 (1997).
  26. S. S. Gorelik, in recrysrallization of Metals and Alloys, p.41, Moskva (1978).
  27. P. Coulomb, Scr. Metall. 15, 769 (1981). https://doi.org/10.1016/0036-9748(81)90017-X