• Title/Summary/Keyword: discontinuity plane

Search Result 92, Processing Time 0.021 seconds

Strain Distribution of transition zone in a nailed wall (네일로 보강된 구조물에서의 변이영역과 변형률 분포)

  • 장기태;남궁한;유병선;김경태;권병근;이선경
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11b
    • /
    • pp.235-239
    • /
    • 2000
  • For the calculation of internal stability, the hypothesis in conventional design is on the basis of two distinct zones, which are 'active zone' and 'passive zone'. This means that there is an abrupt discontinuous transition from active to passive states across a potential failure line. The existence of a discontinuity of this nature appears physically unreasonable, especially from kinematic considerations. A series of pull-out model tests was undertaken from a wall being rotated about the toe to find the strain distribution mobilized from near the wall face into the deep, stable zone through the centre plane. With this finding of transition zone, the objective of study is aiming at identifying the likely effect of this zone in designing method by comparing with the prevailing design method.

  • PDF

Thermo-elastic stability behavior of laminated cross-ply elliptical shells

  • Patel, B.P.;Shukla, K.K.;Nath, Y.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.6
    • /
    • pp.749-755
    • /
    • 2005
  • In this work, thermo-elastic stability behavior of laminated cross-ply elliptical cylindrical shells subjected to uniform temperature rise is studied employing the finite element approach based on higher-order theory that accounts for the transverse shear and transverse normal deformations, and nonlinear in-plane displacement approximations through the thickness with slope discontinuity at the layer interfaces. The combined influence of higher-order shear deformation, shell geometry and non-circularity on the prebuckling thermal stress distribution and critical temperature parameter of laminated elliptical cylindrical shells is examined.

Strain Distribution of Transition Zone in a Nail Wall (네일로 보강된 구조물에서의 변이영역과 변형률 분포)

  • Chang, Ki-Tae;NamGung, Han;Yoo, Byung-Sun
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.1
    • /
    • pp.39-43
    • /
    • 2005
  • For the calculation of internal stability, the hypothesis in conventional design is on the basis of two distinct zones, which are 'active zone' and 'passive zone'. This means that there is an abrupt discontinuous transition from active to passive states across a potential failure line. The existence of a discontinuity of this nature appears physically unreasonable, especially from kinematic considerations. A series of pull-out model tests was undertaken from a wall being rotated about the toe to find the strain istribution mobilized from near the wall face into the deep, stable zone through the centre plane. With this finding of transition zone, the objective of study is aiming at identifying the likely effect of this zone in designing method by comparing with the prevailing design method.

  • PDF

Transition membrane elements with drilling freedom for local mesh refinements

  • Choi, Chang-Koon;Lee, Wan-Hoon
    • Structural Engineering and Mechanics
    • /
    • v.3 no.1
    • /
    • pp.75-89
    • /
    • 1995
  • A transition membrane element designated as CLM which has variable mid-side nodes with drilling freedoms has been presented in this paper. The functional for the linear problem, in which the drilling rotations are introduced as independent variables, has been formulated. The transition elements with variable side nodes can be efficiently used in the local mesh refinement for the in-plane structures, which have stress concentrations. A modified Gaussian quadrature is needed to be adopted to evaluate the stiffness matrices of these transition elements mainly due to the slope discontinuity of displacement within the elements. Detailed numerical studies show the excellent performance of the new transition elements developed in this study.

Impedance Analysis of DGS Slot in Spectral Domain and Its Application of LPF(Low Pass Filter) (스펙트럴 영역에서 DGS 슬롯 임피던스 특성 해석 및 LPF 응용)

  • Rhee, Seung-Yeop;Kim, On;Chang, Jae-Soo;Go, Jin-Hyun;Ha, Jae-Kwon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.4
    • /
    • pp.418-426
    • /
    • 2008
  • In this paper, investigations on the impedance characteristics of a DGS(Defected Ground Structure) slot in the groud plane of microstripline are presented in spectral domain and applied to the characteristic improvement of stepped impedance microstrip low pass filter(LPF). In this method, expressions for the impedance of a DGS slot are derived from self-reaction of the angular spectrum of plane waves and the discontinuity in the modal voltage. The numerical results are compared with those of the rigorous full-wave method and are shown to produce reasonably accurate data. And the stepped impedance microstrip low pass filter is designed and fabricated with the uniform and nonuniform DGS slots for improving the frequency responses. The experiments show that the proposed filter with slots in the ground plane has a wider stopband and sharper cutoff response.

A Study on the Analysis of Aesthetic Shape Shown on the Modern Flat Patterned Clothing (현대 평면의에 나타난 형태미에 관한 연구)

  • Kwen, Jin
    • Journal of the Korean Society of Costume
    • /
    • v.56 no.7 s.107
    • /
    • pp.115-125
    • /
    • 2006
  • The study on plane composition in clothing was focused mainly on woven wear earlier but its application has been reaching the knit wear. This study is confined to the utilization with geometrical linear pattern in the modern apparel. The work here intends to grasp the plane structure found in both woven wear and knit wear and, in particular, to understand the aesthetics of fashion. The modern flat patterned clothing has been affected by the oriental style or postmodernism in view of social and cultural aspect while its fabric material and expression method shows the diversity in terms of industrial and technical aspect. It can be characterized as several outstanding patterns: the geometrical pattern in structure, the linear pattern with seam line and 2-dimensional plane pattern without seam line, and the flexible silhouette integrated into one single shape with human body unlike the traditional apparel The aesthetics of fashion in modern flat patterned clothing can be divided into such category as the organically spatial change, the re-creation of tradition and the non-format framework. The organically spatial change shows the geometrical formation in clothes due to change in dimension, where the organically changing uniformity and generosity appears as the dimension progresses. The timeless without any difference of up and down, left and right, and inside and outside and the discontinuity due to limitless spatial change are also imbedded. The re-creation of tradition tells the reshaped spirits of old tradition by integrating and modifying the hereditary features in the old customed clothing into modern clothing. The modern flat patterned clothing implies the contemporaneousness or the frame through which the old and modern cultures may be shared and indicates the re-creation of the past and uniformity. The non-format framework contains the uncertainty in meaning and it doesn't have any certain standards. As both the apparel and the human body with this style aim at the open space, the numerous contingencies are realized.

Development and application of 3D migration techniques for tunnel seismic exploration (터널내 탄성파 탐사의 3차원 구조보정기법 개발 및 현장적용)

  • Choi, Sang-Soon;Han, Byeong-Hyeon;Kim, Jae-Kwon;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.3
    • /
    • pp.247-258
    • /
    • 2004
  • Two 3-dimensional data processing techniques to predict the fractured zone ahead of a tunnel face by the tunnel seismic survey were proposed so that the geometric formation of the fractured zone could be estimated. The first 3-dimensional data processing technique was developed based on the principle of ellipsoid, The input data needed for the 3D migration can be obtained from the 2-dimensional tunnel seismic prediction (TSP) test where the TSP test should be performed in each sidewall of a tunnel. The second 3-dimensional migration technique that was developed based on the concept of wave travel plane was proposed. This technique can be applied when the TSP is operated with sources in one sidewall of a tunnel while the receivers are installed in both sidewalls. New migration technique was applied to an in-situ tunnelling site. The 3-dimensional migration was performed using measured TSP data and its results were compared with the geological investigation results that were monitored during tunnel construction. This comparison revealed that the proposed migration technique could reconstruct the discontinuity planes reasonably well.

  • PDF

On the Mechanism of Smooth Blasting on the Rock Containing Discontinuties (불연속면이 존재하는 암반에서의 Smooth Blasting의 기구)

  • 박홍민;이상은
    • Explosives and Blasting
    • /
    • v.14 no.4
    • /
    • pp.13-19
    • /
    • 1996
  • Lately, the improtance of smooth blasting is increasing on every construction fields, suchas underground caves, tunnels, and roadconstruction, etc. The main purpose of smooth blasting is to prevent unnecessary cracks from the base rockwhich preserved permanently and is to gain the smooth fracture plane. So, in smooth blashing, explosives with low detonating velocity are generally used. But it is difficult to discuss general theory on the smooth blashing because the mechanical properties of pertienent rocks are difficult regionally. Accordingly basic reserches on the smooth blasting are demended. In this paper, the mechanisms of the smooth blasting on the rocks containing discontinuities were discussd. Firstly, the writer predicted the formation of fracture plane and unevenness using mathematical methodology, the next the model blast tests were conducted in order to simulate the crack propagation modes from the blast holes. Through the research, the following conclusions were obtained l)The blast test results were in reasonally good agreement with the theoretical prediction. 2)The degree of discontinuity has an influence on the fracture morphology.

  • PDF

Multi-material topology optimization for crack problems based on eXtended isogeometric analysis

  • Banh, Thanh T.;Lee, Jaehong;Kang, Joowon;Lee, Dongkyu
    • Steel and Composite Structures
    • /
    • v.37 no.6
    • /
    • pp.663-678
    • /
    • 2020
  • This paper proposes a novel topology optimization method generating multiple materials for external linear plane crack structures based on the combination of IsoGeometric Analysis (IGA) and eXtended Finite Element Method (X-FEM). A so-called eXtended IsoGeometric Analysis (X-IGA) is derived for a mechanical description of a strong discontinuity state's continuous boundaries through the inherited special properties of X-FEM. In X-IGA, control points and patches play the same role with nodes and sub-domains in the finite element method. While being similar to X-FEM, enrichment functions are added to finite element approximation without any mesh generation. The geometry of structures based on basic functions of Non-Uniform Rational B-Splines (NURBS) provides accurate and reliable results. Moreover, the basis function to define the geometry becomes a systematic p-refinement to control the field approximation order without altering the geometry or its parameterization. The accuracy of analytical solutions of X-IGA for the crack problem, which is superior to a conventional X-FEM, guarantees the reliability of the optimal multi-material retrofitting against external cracks through using topology optimization. Topology optimization is applied to the minimal compliance design of two-dimensional plane linear cracked structures retrofitted by multiple distinct materials to prevent the propagation of the present crack pattern. The alternating active-phase algorithm with optimality criteria-based algorithms is employed to update design variables of element densities. Numerical results under different lengths, positions, and angles of given cracks verify the proposed method's efficiency and feasibility in using X-IGA compared to a conventional X-FEM.

Design of 4-Layer PCB Considering EMC for Automotive Bluetooth Speaker (차량용 블루투스 스피커를 위한 EMC를 고려한 4층 PCB 설계)

  • Yoon, Ki-Young;Kim, Boo-Gyoun;Lee, Seongsoo
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.591-597
    • /
    • 2021
  • This paper proposes an EMC-aware PCB design method to reduce electromagnetic emission, where trace length and teturn path of critical signal are shortened by changing chip location and trace layout on the PCB, while additional filters or decoupling capacitors are not required. In the proposed method, signal velocity is calculated for various signals on the PCB. Critical signal with the fastest signal velocity is determined and its return path is shortened as much as possible by placing chip location and trace routing first. Return path of critical signal should be carefully designed not to have discontinuity. Power plane and ground plane should be carefully designed not to be divided, since these planes are the reference of return path. The proposed method was applied to automotive directional Bluetooth speaker which failed to pass CISPR 32 and CISPR 25 EMC tests. Its PCB was redesigned based on the proposed method and it easily passed the EMC tests. The proposed method is useful to EMC-sensitive electronic equipments.