• Title/Summary/Keyword: disc algebra

Search Result 7, Processing Time 0.018 seconds

Almost derivations on the banach algebra $C^n$[0,1]

  • Jun, Kil-Woung;Park, Dal-Won
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.359-366
    • /
    • 1996
  • A linear map T from a Banach algebra A into a Banach algebra B is almost multiplicative if $\left\$\mid$ T(fg) - T(f)T(g) \right\$\mid$ \leq \in\left\$\mid$ f \right\$\mid$\left\$\mid$ g \right\$\mid$(f,g \in A)$ for some small positive $\in$. B.E.Johnson [4,5] studied whether this implies that T is near a multiplicative map in the norm of operators from A into B. K. Jarosz [2,3] raised the conjecture : If T is an almost multiplicative functional on uniform algebra A, there is a linear and multiplicative functional F on A such that $\left\$\mid$ T - F \right\$\mid$ \leq \in', where \in' \to 0$ as $\in \to 0$. B. E. Johnson [4] gave an example of non-uniform commutative Banach algebra which does not have the property described in the above conjecture. He proved also that C(K) algebras and the disc algebra A(D) have this property [5]. We extend this property to a derivation on a Banach algebra.

  • PDF

AFFINE HOMOGENEOUS DOMAINS IN THE COMPLEX PLANE

  • Kang-Hyurk, Lee
    • Korean Journal of Mathematics
    • /
    • v.30 no.4
    • /
    • pp.643-652
    • /
    • 2022
  • In this paper, we will describe affine homogeneous domains in the complex plane. For this study, we deal with the Lie algebra of infinitesimal affine transformations, a structure of the hyperbolic metric involved with affine automorphisms. As a consequence, an affine homogeneous domain is affine equivalent to the complex plane, the punctured plane or the half plane.

REGULAR CLOSED BOOLEAN ALGEBRA IN SPACE WITH ONE POINT LINDELOFFICATION TOPOLOGY

  • Gao, Shang-Min
    • The Pure and Applied Mathematics
    • /
    • v.7 no.1
    • /
    • pp.61-69
    • /
    • 2000
  • Let($X^{\ast},\tau^{\ast}$) be the space with one point Lindeloffication topology of space (X,$\tau$). This paper offers the definition of the space with one point Lin-deloffication topology of a topological space and proves that the retraction regu-lar closed function f: $K^{\ast}(X^{\ast}$) defined f($A^{\ast})=A^{\ast}$ if p $\in A^{\ast}$ or ($f(A^{\ast})=A^{\ast}-{p}$ if $p \in A^{\ast}$ is a homomorphism. There are two examples in this paper to show that the retraction regular closed function f is neither a surjection nor an injection.

  • PDF

COEFFICIENT DISCS AND GENERALIZED CENTRAL FUNCTIONS FOR THE CLASS OF CONCAVE SCHLICHT FUNCTIONS

  • Bhowmik, Bappaditya;Wirths, Karl-Joachim
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.5
    • /
    • pp.1551-1559
    • /
    • 2014
  • We consider functions that map the open unit disc conformally onto the complement of an unbounded convex set with opening angle ${\pi}{\alpha}$, ${\alpha}{\in}(1,2]$, at infinity. We derive the exact interval for the variability of the real Taylor coefficients of these functions and we prove that the corresponding complex Taylor coefficients of such functions are contained in certain discs lying in the right half plane. In addition, we also determine generalized central functions for the aforesaid class of functions.

SINGULAR INNER FUNCTIONS OF $L^{1}-TYPE$

  • Izuchi, Keiji;Niwa, Norio
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.787-811
    • /
    • 1999
  • Let M be the maximal ideal space of the Banach algebra $H^{\infty}$ of bounded analytic functions on the open unit disc $\triangle$. For a positive singular measure ${\mu}\;on\;{\partial\triangle},\;let\;{L_{+}}^1(\mu)$ be the set of measures v with $0\;{\leq}\;{\nu}\;{\ll}\;{\mu}\;and\;{{\psi}_{\nu}}$ the associated singular inner functions. Let $R(\mu)\;and\;R_0(\mu)$ be the union sets of $\{$\mid$\psiv$\mid$\;<\;1\}\;and\;\{$\mid${\psi}_{\nu}$\mid$\;<\;0\}\;in\;M\;{\setminus}\;{\triangle},\;{\nu}\;\in\;{L_{+}}^1(\mu)$, respectively. It is proved that if $S(\mu)\;=\;{\partial\triangle}$, where $S(\mu)$ is the closed support set of $\mu$, then $R(\mu)\;=\;R0(\mu)\;=\;M{\setminus}({\triangle}\;{\cup}\;M(L^{\infty}(\partial\triangle)))$ is generated by $H^{\infty}\;and\;\overline{\psi_{\nu}},\;{\nu}\;{\in}\;{L_1}^{+}(\mu)$. It is proved that %d{\theta}(S(\mu))\;=\;0$ if and only if there exists as Blaschke product b with zeros $\{Zn\}_n$ such that $R(\mu)\;{\subset}\;{$\mid$b$\mid$\;<\;1}\;and\;S(\mu)$ coincides with the set of cluster points of $\{Zn\}_n$. While, we proved that $\mu$ is a sum of finitely many point measure such that $R(\mu)\;{\subset}\;\{$\mid${\psi}_{\lambda}$\mid$\;<\;1}\;and\;S(\lambda)\;=\;S(\mu)$. Also it is studied conditions on \mu for which $R(\mu)\;=\;R0(\mu)$.

  • PDF