• Title/Summary/Keyword: direction-finding antenna

Search Result 67, Processing Time 0.022 seconds

The Statistical Performance Analysis of Satellite Tracking Algorithm for Mobile TT&C (이동위성 관제용 위성 위치 탐지 알고리즘의 통계적 성능 분석)

  • Lee, Yun-Soo;Lee, Byung-Seub;Chung, Won-Chan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.12
    • /
    • pp.1352-1358
    • /
    • 2007
  • This paper address the statistical charateristics of MUSIC algorithm which is suggested as satellite direction finding algorithm. If the MUSIC algorithm is adopted as a satellite direction detection method in mobile TT&C system, then the statistical performance of the MUSIC algorithm will be closely related with the overall performance of the system. So statistical characteristics of the parameter in the respect of SNR and data length are addressed and then analyse the final effects to the satellite direction finding.

Beam Curve Optimization for Minimizing the Phase Errors of Rotman Lens (Rotman 렌즈의 위상 오차 최소화를 위한 빔 곡선 최적화)

  • Park, Joo-Rae;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.8
    • /
    • pp.864-871
    • /
    • 2014
  • In this paper, we propose an optimization method for obtaining beam curve which minimize the phase errors of Rotman lens. This method is based on idea that 3 path lengths from a beam port through equal phase points, which consist of the center point of array antenna and two points placed symmetrically or asymmetrically along array antenna, to the corresponding phase front are equal. According to this method, the optimal locations of beam ports can be obtained directly by finding each equal phase point set on array antenna to minimize the phase errors for each beam direction. Simulation results show that the proposed method is the most optimal and effective method for determining the beam curve of Rotman lens with low phase errors.

The Fast Correlative Vector Direction Finder Conversion (직접 변환을 이용한 고속 상관형 벡터 방향탐지기)

  • Park, Cheol-Sun;Kim, Dae-Young
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.12 s.354
    • /
    • pp.16-23
    • /
    • 2006
  • This paper presents the development of the fast Direction Finder using direct conversion method, which can intercept for short pulse signal of less' than 1 msec. in RF Down Converter, and CVDF(Correlative Vector Direction Finding) algorithm, which estimates DoA (Direction of Arrival). The configuration and characteristics of direction finder using 5-channel equi-spaced circular array antenna are presented and the direct conversion techniques for removing tuning time using I/Q demodulator are described. The CRLB of our model is derived, the principles of 2 kind of CVDF algorithm are explained and their characteristics are compared with CRLB w.r.t the number of samples and spacing ratio. The RF Down Converter prototype using direct conversion method is manufactured, the 2 kind of CVDF algorithm are applied and their performance are analyzed. Finally it is confirmed the LSE based CVDF algorithm is better than correlation-coefficient based except for ambiguity protection capabilities.

Configuration of a 16-Element Array Antenna Design to Improve Signal Detection Performances (신호탐지 정확도를 높이기 위해 최적 배열형상을 고려한 16소자 배열안테나 설계)

  • Jang, Doyoung;Yoo, Sungjun;Wang, Jinchun;Lee, Jun-Yong;Choo, Hosung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.6
    • /
    • pp.438-444
    • /
    • 2019
  • In this paper, we proposed a 16-element array antenna design to improve signal detection performances. The array antenna characteristics, such as mutual coupling, pattern deviation, and half power beamwidth of the active element, were examined to obtain an optimal spacing between individual elements. The single element of the array antenna consists of an indirect feed using L-shaped feed and shorted radiating patch to achieve a broadband operation. Root mean square(RMS) errors based on the incident angle of the signal were calculated to verify the signal detection performance of the proposed antenna. The results demonstrate that the proposed array antenna with optimal spacing is suitable for detecting interference signals with low RMS error.

DOA estimation and interpolation beamformering with semicircular array

  • Wang, Yisu;Zhou, Weiwei;Wang, Lidong;Koh, Jin-Hwan
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.249-250
    • /
    • 2006
  • Nowadays adaptive technique allows arrays of any geometry to be used with fast direction-of-arrival (DOA) estimators designed for linear arrays. So the interpolation of data from a given antenna array onto the output of a virtual array is needed before the direction finding technique is applied to the outputs of a uniform linear virtual array (ULVA). In this paper some superresoluntion methods are used to estimate DOA by best-fit transformation matrix T under different nonuniformly spaced array.

  • PDF

Enhanced Resolution of Spatially Close Incoherent Sources using Virtually Expanded Arrays (가상 확장된 배열 안테나를 이용한 근접 입사신호의 분해능 향상 기법)

  • Kim, Young-Su;Kang, Heung-Yong;Kim, Chang-Joo
    • Journal of Advanced Navigation Technology
    • /
    • v.6 no.3
    • /
    • pp.181-187
    • /
    • 2002
  • In this paper, we propose a resolution enhancement method for estimating direction-of-arrival(DOA) of narrowband incoherent signals incident on a general array. The resolution of DOA algorithm is dependent on the aperture size of antenna array. But it is very impractical to increase the physical size of antenna array in real environment. We propose the method that improves resolution performance by virtually expanding the sensor spacing of original antenna array and then averaging the spatial spectrum of each virtual array which has a different aperture size. Superior resolution capabilities achieved with this method are shown by simulation results in comparison with the standard MUSIC for incoherent signals incident on a uniform circular array.

  • PDF

Signal Processing Algorithm to Reduce RWR Electro-Magnetic Interference with Tail Rotor Blade of Helicopter

  • Im, Hyo-Bin;Go, Eun-Kyoung;Jeong, Un-Seob;Lyu, Si-Chan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.2
    • /
    • pp.117-124
    • /
    • 2009
  • In the environment where various and complicated threat signals exist, RWR (Radar Warning Receiver), which can warn pilot of the existence of threats, has long been a necessary electronic warfare (EW) system to improve survivability of aircraft. The angle of arrival (AOA) information, the most reliable sorting parameter in the RWR, is measured by means of four-quadrant amplitude comparison direction finding (DF) technique. Each of four antennas (usually spiral antenna) of DF unit covers one of four quadrant zones, with 90 degrees apart with nearby antenna. According to the location of antenna installed in helicopter, RWR is subject to signal loss and interference by helicopter body and structures including tail bumper, rotor blade, and so on, causing a difficulty of detecting hostile emitters. In this paper, the performance degradation caused by signal interference by tail rotor blades has been estimated by measuring amplitude video signals into which RWR converts RF signals in case a part of antenna is screened by real tail rotor blade in anechoic chamber. The results show that corruption of pulse amplitude (PA) is main cause of DF error. We have proposed two algorithms for resolving the interference by tail rotor blades as below: First, expand the AOA group range for pulse grouping at the first signal analysis phase. Second, merge each of pulse trains with the other, that signal parameter except PRI and AOA is similar, after the first signal analysis phase. The presented method makes it possible to use RWR by reducing interference caused by blade screening in case antenna is screened by tail rotor blades.

A Study on the Implementation of simple Portable Directional Finding System for 5G Mobile Communication (5G 이동통신용 간이 방향탐지시스템 구현에 관한 연구)

  • Noh, Jowon;Joh, Eungyoung;Kim, Jin-Tea;Lee, Sunghwa
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.3
    • /
    • pp.25-30
    • /
    • 2020
  • This study is to provide high-quality mobile communication service to subscribers and wireless communication users in a Mobile communication environment. It is about a method to secure the quality of a call by early processing a faulty radio station. The purpose of this study is to design and implement a direction detection system suitable for a mobile communication environment and portable as a method for early detection and resolution of interference and illegal wireless stations occurring in 5G mobile communication. The basic configuration of a portable direction detection system was designed, and a method was proposed to find and repair a faulty wireless station in a short time through manufacturing and experimentation.

Application of Radar Survey to a Granite Quarry Mine (화강암 석산 지역에서의 레이다 탐사의 적용)

  • Seol Soon-Jee;Kim Jung-Ho;Cho Seong-Jun;Yi Myeong-Jong;Chung Seung-Hwan
    • Geophysics and Geophysical Exploration
    • /
    • v.4 no.1
    • /
    • pp.8-18
    • /
    • 2001
  • To delineate the inhomogeneities including fractures and to estimate the freshness of rock borehole radar consisting of the reflection and tomography methods, and GPR surveys were conducted at a granite quarry mine. The borehole reflection survey using the direction finding antenna was also conducted to get the spatial orientations of reflectors. 20 MHz was adopted as the central frequency for the borehole radar reflection and tomography surveys and 100 MHz was for GPR. Through the interpretation of borehole reflection data using dipole and direction finding antenna as well as GPR images, which are good agreement with each other, we could determine the orientation of the major fractures in three dimensional way. Parts of travel time curves of tomography data showed the anisotropy, which is uncommon in granite quarry. By comparing the tomography data and TeleViewer images, the anisotropy effect in this area are closely related to fine fissures aligned in the same direction. The area confined by the two fractures, MF2 and MF5, might consist of the most fresh granite in the surveyed area, which was concluded from the borehole radar tomography, and GPR images as well as the distribution of anisotropy.

  • PDF

The Design of Array Geometry in 2-D Multiple Baseline Direction Finding (2차원 멀티베이스라인 방향탐지 배열 구조 설계)

  • Park, Cheol-Sun;Kim, Dae-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.10A
    • /
    • pp.988-995
    • /
    • 2006
  • In this Paper, we Present a nonharmonic may geometry design method using Euclidan minimum distance function in difference Phase spaces for 2-D (azimuth/elevation) multiple baseline antenna may which has a way to reduce the number of sensor antennas while maintaining accurate DOA estimate. The major advantages of our approach is that even the shortest interelement spacing can be larger than half-wavelength and is not limit13d to linear and it can be applied successfully to any array configuration. In multiple signals impinging situation, the performance simulation results of superresolution algorithms shows the effectiveness of the proposed method. Also the 2-D asymmetric may using the Proposed method is designed and the Performance of the manufactured away through the experimental test is verified.