• Title/Summary/Keyword: direction turning

Search Result 191, Processing Time 0.023 seconds

A Study on Kinematic Analysis of Trunk and Lower Extremities in Stance Phase of Walking according to Turning Direction (보행 방향 전환 시 입각기 하지 및 체간의 운동형상학적 분석)

  • Oh, Tae-Young
    • The Journal of Korean Physical Therapy
    • /
    • v.25 no.2
    • /
    • pp.88-95
    • /
    • 2013
  • Purpose: The purpose of this study was to conduct an analysis of kinematics of lower extremities and trunk in stance phase of walking according to turning direction. Methods: Ten university students (five male, five female) who were in their 20s (mean age was 20.6 years old) participated in this study. Participants did not have participants did not have any problem with skeletal muscular system. We used the "Qualisys motion capture system" for analysis of trunk and lower extremity movement in stance phase of walking according to turning direction. We collected data while subjects walked a distance of 10 m, and at the 6 m line, subjects were required to turn to the left side and the right leg was positioned in stance phase and the left leg was positioned in swing. For data analysis, the SPSS for Windows ver. 20.0 statistics program was used in performance of one way analysis of variance according to turning direction. Results: Significant difference of trunk and lower extremities was observed for turning direction according to walking cycle (p<0.05). Upper trunk movement showed a greater increase at three dimensions than lower trunk, and in heel off phase, pelvic movement showed a greater increase than lower trunk (p<0.05). In 45 degree and 90 degrees of turning direction, all movements of trunk and lower extremities were significantly different among three events of stance phase (p<0.05). Conclusion: We suggest that three-dimensional movement analysis of trunk and lower extremities during turning movement was very important in order to indicate increasing balance or walking ability for people with impaired movement or walking.

Effect of Neck Rotating Directions on the Muscle Activity of Upper and Lower Trapezius during Shoulder External Rotation

  • Shin, Yong Wook;Kim, Chi Hwan;Han, Jin Tae
    • The Journal of Korean Physical Therapy
    • /
    • v.32 no.2
    • /
    • pp.101-106
    • /
    • 2020
  • Purpose: This study examined the effects of the directions of neck rotation on the muscle activity of the upper trapezius and lower trapezius while rotating a shoulder externally. Methods: Twenty-five healthy males participated in this study. The subjects were asked to rotate their shoulder externally with 90° shoulder abduction and 90° elbow flexion in three different neck rotations (neutral, ipsilateral, and contralateral) in the prone position. The muscle activities of the upper and lower trapezius were measured using surface electromyography. One way repeated measures ANOVA was used to compare the muscle activity of the upper and lower trapezius depending on the different neck turning directions. Results: In the upper trapezius, turning the neck in the ipsilateral direction while turning a shoulder externally decreased the muscle activity significantly, but the muscle activity was increased significantly by turning the neck in the contralateral direction. On the other hand, in the lower trapezius, turning the neck in the ipsilateral direction increased the muscle activity significantly, but the muscle activity was decreased significantly by turning the neck in the contralateral direction decreased it significantly. Conclusion: When someone has an imbalance of shoulder function, turning the neck in the ipsilateral direction while turning the shoulder externally in the prone position is effective in decreasing the activity of the upper trapezius and increasing the activity of the lower trapezius. Therefore, these results could be used as basic evidence for researching patients with shoulder problems.

Effect of Direction to be Used for the Timed Up and Go Test on Walking Time in Stroke Patients (일어서서 걷기 검사 시 회전 방향이 뇌졸중 환자의 보행 시간에 미치는 영향)

  • Lee, Geon;Cho, Cheol-hoon;Lim, Kyung-jin;Lee, Joo-hyun;Yoon, Gyu-ri;Woo, Young-keun
    • Physical Therapy Korea
    • /
    • v.23 no.2
    • /
    • pp.11-19
    • /
    • 2016
  • Background: In the stroke patients with the characteristics of hemiplegic gait, turning direction of the affected and unaffected side influences turning time. Therefore, it is important to investigate the walking response to turning directions in stroke patients. Objects: This study aimed to measure the walking time while turning direction in hemiplegic patients depending on balance ability measured by Berg Balance Scale. Methods: A group of forty-five subjects with stroke (Berg Balance Scale score${\geq}46$ were twenty-eight, Berg Balance Scale score${\leq}45$ were seventeen) were enrolled in this study. Subjects were asked to perform the Timed Up and Go test. Testing indications included two directions for turning in each subject. These indications were for turning toward the affected and unaffected side in stroke patients. The duration of total analysis duration, sit to stand phase, stand to sit phase, mid-turning phase, and end turning phase were recorded. The obtained data were analyzed by using paired t-test and Wilcoxon signed rank test in the group that are below and above 45 points of Berg Balance Scale score. The significance level was set at ${\alpha}=.05$. Results: There were significant increase time in the analysis duration and end turning phase duration while subjects were turned the unaffected side in stroke patients that presented a Berg Balance Scale score${\leq}45$ (p<.05). However, the comparison between the affected side and the unaffected side in the stroke patients with Berg Balance Scale score${\geq}46$, revealed no significant differences of the measured parameters. Conclusion: This finding should be suggested in the specific definition of turning direction for evaluation with Timed Up and Go test in the Berg Balance Scale score${\leq}45$, and other intervention for hemiplegic patients need to be suggested the direction of turning during walking training program.

A Study on the Method of Turning Circle Drawing by Z-test (Z시험에 의한 선회권의 작도법에 관한 연구)

  • 오정철
    • Journal of the Korean Institute of Navigation
    • /
    • v.7 no.1
    • /
    • pp.33-62
    • /
    • 1983
  • A navigator on bridge needs to know every kinds of motion characteristics of his vessel at sea. Generally when a vessel is completely built, the shipyard makes turning circle diagrams from the results of turing circle tests made during the sea trials for the reference of the vessel's owner. But referring only the data of a turning circle diagram, an officer on bridge can not figure out his vessel's maneuvering characteristics sufficiently, So nowadays the shipyard often adds Z test to turning circle test for more detail references. In this paper the author made Z and turning circle tests at the rudder angles of 15 and and 35 degress separately and in each of the case made a turrning circle diagram from the results of the turning circle test and the esults numerically calculated from mathematical formula made on the base of the maneuvering indices got from the Z test and compared them each other for the purpose of finding the correlations between them. Followings are concluded from the results. An actual turning circle diagram and a calculated one from the results of the Z test at same rudder angle coincides each other well when the center of the calculated circle is transferred by 1.7B toward the direction of the initial turning perpendicularly to the original course and 0.5L toward the direction in parallel with original course in case of the rudder angle of 35 degrees and 1.2B and 0.3L toward each of the above mentioned directions in case of rudder angle of 15 degrees.

  • PDF

Effect of Load Condition on Turning Performance of a VLCC in Adverse Weather Conditions

  • Zaky, Mochammad;Yasukawa, Hironori
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.4 no.2
    • /
    • pp.53-65
    • /
    • 2018
  • The load condition significantly influences ship maneuverability in calm water. In this research, the effect of the load condition on turning performance of a very large crude oil carrier (VLCC) sailing in adverse weather conditions is investigated by an MMG-based maneuvering simulation method. The relative drift direction of the ship in turning to the wave direction is $20^{\circ}-30^{\circ}$ in ballast load condition (NB) and full load condition (DF) with a rudder angle $35^{\circ}$ and almost constant for any wind (wave) directions. The drifting displacement in turning under NB becomes larger than that under DF at the same environmental condition. Advance $A_d$ and tactical diameter $D_t$ become significantly small with an increasing Beaufort scale in head wind and waves when approaching, although $A_d$ and $D_t$ are almost constant in following wind and waves. In beam wind and waves, the tendency depends on the plus and minus of the rudder angle.

Analysis of Driving Conditions and Traffic Accidents in the Case of Trumpet Interchange Ramps (트럼펫 IC 램프의 운전조건과 교통사고 분석)

  • Kim, Tae-Yeong;Park, Byeong-Ho
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.1 s.94
    • /
    • pp.73-79
    • /
    • 2007
  • This study deals with traffic accidents at the ramps of trumpet interchanges. The purpose of the study is to analyze the relations between tke turning direction of ramps (and combinations with other factors) and traffic accidents. In Pursuing this analysis, this study gives particular attention to the combination of turning direction and grade and the combination of turning direction and radius of curvature in the case of the trumpet interchange ramps. The null hypothesis tests show that the average accident number and average accident rate ate rejected at the 90% and 95% significance level respectively Also. the null hypothesis tests show that the combinations or turning direction and Evade as well as turning direction and radius are all rejected at the 95% significance level. In summary, right turn movements ate more dangerous than left turns on the trumpet interchange vamps. Also, ramps with a right turn and up grade or with a left turn and radius more than 200m have more traffic accident Potential than other types of ramps.

User-friendly adjustable table fan with selective rotation angles (사용 편의성 향상을 위한 선풍기의 효율적 회전구간 선정)

  • Kim, Sang-Hyun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.53-58
    • /
    • 2022
  • Since a general household fan has only one left/right turning stage, the rotation angle cannot be adjusted leading to cases whether the wind reaches to an unnecessary area or vice versa. In this paper, we propose a method to efficiently control the turning section to selectively send wind to a necessary space while reducing energy waste. The minimum rotation angle was obtained by experimentally measured the stationary wind direction angle of the fan, and the optimal number of turning stages was selected by appropriately dividing the space where the wind reaches. Through this, it was confirmed that if the fan has a minimum rotation angle of 45°, a turning section of 3 stages and its rotation angle is increased by twice the stationary wind direction angle at each stage, the wind is distributed efficiently. Therefore, it is considered that the selective turning stage control proposed in this paper can minimize energy waste without significant change of the fan structure.

Directing the turning behavior of carp using virtual stimulation

  • Kim, Cheol-Hu;Kim, Dae-Gun;Kim, Daesoo;Lee, Phill-Seung
    • Ocean Systems Engineering
    • /
    • v.7 no.1
    • /
    • pp.39-51
    • /
    • 2017
  • Fishes detect various sensory stimuli, which may be used to direct their behavior. Especially, the visual and water flow detection information are critical for locating prey, predators, and school formation. In this study, we examined the specific role of these two different type of stimulation (vision and vibration) during the obstacle avoidance behavior of carp, Cyprinus carpio. When a visual obstacle was presented, the carp efficiently turned and swam away in the opposite direction. In contrast, vibration stimulation of the left or right side with a vibrator did not induce strong turning behavior. The vibrator only regulated the direction of turning when presented in combination with the visual obstacle. Our results provide first evidence on the innate capacity that dynamically coordinates visual and vibration signals in fish and give insights on the novel modulation method of fish behavior without training.

A Study on the New Course Distance and the proper time to alter course (신침로거리와 전타시점에 관한 연구)

  • KIM, Min-Seok
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.21 no.4
    • /
    • pp.586-591
    • /
    • 2009
  • The marine traffic accidents go on increasing owing to the increment of marine traffic capacity, and the solutions about these matters are vigorously considering by many researchers. When the watch officer navigates to the narrow channel, bend or an area obscured by an intervening obstruction and around the harbour limit he must follow the planned track. The watch officer can safely navigate along the course laid down only when he alters his course in advance before the new course distance earlier than the course alternation point. If we call this point to be changed in advance a turning bearing, the turning bearing is decided according to the direction and the range from the clearing objects. The turning bearing helps the watch officer to determine whether the ship is at wheel-over position or not. The author in this paper suggest how to make and use a curve graph which is decided according to the direction and the distance from the clearing objects. If the watch officer utilize this curve graph he can judge swiftly and precisely whether his ship is at the wheel - over position or not.

Sensitivity Analysis and Confidence Evaluation for Planar Errors of a Vertical Turning Center (수직형 선반의 평면 오차 민감도 분석 및 신뢰도 평가)

  • 여규환;양승환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.11
    • /
    • pp.67-75
    • /
    • 1998
  • Geometric and thermal errors are key contributors to the errors of a computer numerically controlled turning center. A planar error synthesis model is obtained by synthesizing 11 geometric and thermal error components of a turning center with homogeneous coordinate transformation method. This paper shows the sensitivity analysis on the temperature change, the confidence evaluation on the uncertainty Of measurement systems, and the error contribution analysis from the planar error synthesis model. Planar error in the z direction was very sensitive to the temperature change. and planar errors in the x and z directions were not affected by the uncertainty of measurement systems. The error contribution analysis ,which is applicable to designing a new turning center, was helpful to find the large error components which affect planar errors of the turning center.

  • PDF