• Title/Summary/Keyword: direction of arrival

Search Result 315, Processing Time 0.024 seconds

Radar identification by scan period validation (스캔주기 유효성 판별에 의한 레이더 식별)

  • Kim, Gwan-Tae
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.11
    • /
    • pp.17-22
    • /
    • 2021
  • Radar signal analysis of electronic warfare is a technique for identifying a radar type by signal parameters(direction, radion frequency, pulse repetition interval, pulse width, scan period..) extracted from a received radar pulse. However as the modern radar and new threat environments is advanced, radar identification ambiguity arises in the process of identifying the types of radars. In this paper, we analyze the problems of the existing method and propose a new method. This technique determines the validity of the scan period by the difference in the arrival time of the radar pulse and the minimum number of scan period discrimination. Experiments proved that the scan cycle results are derived regardless of the RMS((Root Mean Square) of the input amplitude.

Sound Source Localization Method Applied to Robot System (로봇 시스템에 적용될 음원 위치 추정 방법)

  • Kwon, Byoung-Ho;Park, Young-Jin;Park, Youn-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.28-32
    • /
    • 2007
  • While various methods for sound source localization have been developed, most of them utilize on the time difference of arrival (TDOA) between microphones or the measured head related transfer functions (HRTF). In case of a real robot implementation, the former has a merit of light computation load to estimate the sound direction but can not consider the effect of platform on TDOAs, while the latter can, because characteristics of robot platform are included in HRTF. However, the latter needs large resources for the HRTF database of a specific robot platform. We propose the compensation method which has the light computation load while the effect of platform on TDOA can be taken into account. The proposed method is used with spherical head related transfer function (SHRTF) on the assumption that robot platform, for example a robot head, installed microphones can be modeled to a sphere. We verify that the proposed method decreases the estimation error caused by the robot platform through the simulation and experiment in real environment.

  • PDF

Efficient Mobile Robot Localization through Position Tracking Bias Mitigation for the High Accurate Geo-location System (고정밀 위치인식 시스템에서의 위치 추적편이 완화를 통한 이동 로봇의 효율적 위치 추정)

  • Kim, Gon-Woo;Lee, Sang-Moo;Yim, Chung-Hieog
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.8
    • /
    • pp.752-759
    • /
    • 2008
  • In this paper, we propose a high accurate geo-location system based on a single base station, where its location is obtained by Time-of-Arrival(ToA) and Direction-of-Arrival(DoA) of the radio signal. For estimating accurate ToA and DoA information, a MUltiple SIgnal Classification(MUSIC) is adopted. However, the estimation of ToA and DoA using MUSIC algorithm is a time-consuming process. The position tracking bias is occurred by the time delay caused by the estimation process. In order to mitigate the bias error, we propose the estimation method of the position tracking bias and compensate the location error produced by the time delay using the position tracking bias mitigation. For accurate self-localization of mobile robot, the Unscented Kalman Filter(UKF) with position tracking bias is applied. The simulation results show the efficiency and accuracy of the proposed geo-location system and the enhanced performance when the Unscented Kalman Filter is adopted for mobile robot application.

Real-time Sound Localization Using Generalized Cross Correlation Based on 0.13 ㎛ CMOS Process

  • Jin, Jungdong;Jin, Seunghun;Lee, SangJun;Kim, Hyung Soon;Choi, Jong Suk;Kim, Munsang;Jeon, Jae Wook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.2
    • /
    • pp.175-183
    • /
    • 2014
  • In this paper, we present the design and implementation of real-time sound localization based on $0.13{\mu}m$ CMOS process. Time delay of arrival (TDOA) estimation was used to obtain the direction of the sound signal. The sound localization chip consists of four modules: data buffering, short-term energy calculation, cross correlation, and azimuth calculation. Our chip achieved real-time processing speed with full range ($360^{\circ}$) using three microphones. Additionally, we developed a dedicated sound localization circuit (DSLC) system for measuring the accuracy of the sound localization chip. The DSLC system revealed that our chip gave reasonably accurate results in an experiment that was carried out in a noisy and reverberant environment. In addition, the performance of our chip was compared with those of other chip designs.

The Radiation Compensation Method for Two Dimensional Direction Finding of GPS Signal and Experiment Method (광대역 GPS신호의 2차원 방향탐지를 위한 방사보정 기법 및 시험 방안)

  • Ju, Hyung-Jun;Park, Seul-Gi;Kim, Dong-Whan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.155-162
    • /
    • 2020
  • In this paper, we present a radiation compensation method and experiment method for two-dimensional direction finding by elevation and azimuth angles of broadband GPS signal, and then produce experimental results. Previous studies have performed direction finding by only using the azimuth angle of the detected signal. So, the compensation table utilizes compensation data by azimuth angles only. However, the presented method in this study has compensation data by azimuth and elevation angles for two-dimensional direction finding. Because of direction finding systems and applications are diversified, recently. So, we present a two-dimensional radiation compensation method. For evaluation of the presented compensation method, we calculate the ideal phase differences on the antenna for two-dimensional direction finding and simulate phase differences using a FEKO EM simulator. Subsequently, we analyze experimental data by radiation compensation experiments using the presented compensation method in an anechoic chamber.

A Source Static Correction Algorithm in Crosswell Tomography (시추공 탄성파 자료의 송신기 정보정 알고리즘)

  • Ji Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.3
    • /
    • pp.193-198
    • /
    • 2002
  • In crosswell ray tomography, the resultant velocity structure could be affected by source static, first-arrival-time picking errors, convergence to a local minimum due to an inappropriate initial velocity model and etc. In the paper, I propose an algorithm that automatically correct the souce static among these error-prone factors. The algorithm automatically corrects source static using the picking times' differences along the source direction. The application of the algorithm to real data produces a quite satisfactory result. Tile algorithm seems to be helpful for users to apply the souce static correction consistently and to acquire accurate velocity structure.

A Study on Optimal Hydrophone Arrangement for The Direction Finding of High Speed Moving Target in Underwater (수중에서 고속 기동하는 표적의 방위 탐지를 위한 최적의 청음기 배치 연구)

  • Han, Min-Su;Choi, Jae-Yong;Kang, Dong-Seok;Son, Kweon;Lee, Phil-ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.369-375
    • /
    • 2017
  • One of good DF(Direction Finding) methods is based on TDOA(Time Difference of Arrival) estimation when finding underwater moving target. For small DF error, high time resolution A/D(Analog-to-digital) conversion board and long baseline are needed. But the result of sea trial about close-range and high speed moving target, spatial correlation coefficient and appeared poor properties below 0.3 when hydrophone arrangement are separated over 6 ${\lambda}$ because of underwater fading channel. And we also find out that the distance between hydrophone should be under 4 ${\lambda}$ apart to take advantage of spatial correlation coefficient gain and performance of DF in underwater moving channel environments.

A Vector Channel Characteristics in the Dense Urban Area (국내 대도시 환경에서의 벡터 채널 분석)

  • 고학림;김성래;이종헌
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.3A
    • /
    • pp.233-239
    • /
    • 2004
  • The capacity and the performance of the spatial filtering system depends on the spatial properties of wireless vector channel. In this paper, we have analyzed the wireless vector channel characteristics in the dense urban area using the data collected from the real environments. After analyzing the measurement data, it has been found out that the signals were received mainly from only a few directions (such as roads or commercial buildings) even if mobile users are randomly distributed in a cell. Moreover, the DOA(Direction-of-Arrival) of a received signal may not change continuously while a mobile is moving, it may jump from one direction to the other direction with fading.

The Fast Correlative Vector Direction Finder Conversion (직접 변환을 이용한 고속 상관형 벡터 방향탐지기)

  • Park, Cheol-Sun;Kim, Dae-Young
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.12 s.354
    • /
    • pp.16-23
    • /
    • 2006
  • This paper presents the development of the fast Direction Finder using direct conversion method, which can intercept for short pulse signal of less' than 1 msec. in RF Down Converter, and CVDF(Correlative Vector Direction Finding) algorithm, which estimates DoA (Direction of Arrival). The configuration and characteristics of direction finder using 5-channel equi-spaced circular array antenna are presented and the direct conversion techniques for removing tuning time using I/Q demodulator are described. The CRLB of our model is derived, the principles of 2 kind of CVDF algorithm are explained and their characteristics are compared with CRLB w.r.t the number of samples and spacing ratio. The RF Down Converter prototype using direct conversion method is manufactured, the 2 kind of CVDF algorithm are applied and their performance are analyzed. Finally it is confirmed the LSE based CVDF algorithm is better than correlation-coefficient based except for ambiguity protection capabilities.

A study on improving the low capability of direction finding by interfered phase difference at circular array antennas (원형 배열안테나의 위상간섭에 의한 방향탐지 성능저하 개선 연구)

  • Chung, Jae-Woo;Kim, Young-Kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.9
    • /
    • pp.2157-2163
    • /
    • 2010
  • This paper includes the study of DOA(Direction of Arrival). CVDF(Correlative Vector Direction Finding) algorithm using at the phase difference each antenna needs to obtain ideal sinusoidal phase difference patterns. However, the phase difference patterns of circular array antennas may be interfered on a specific frequency band and to particular angle. The effect of installing each array antenna circularly and the effect of the interference by center pole (located in the center of a circular array antennas) may distort the phase difference patterns. This paper propose how to change the combination of antennas to measure phase difference patterns in real-time and how to use antenna beam patterns for minimizing the degradation phenomena with old CVDF algorithm. According to the test result, the capability of direction finding is improved.