• 제목/요약/키워드: direct yaw moment

검색결과 20건 처리시간 0.019초

차량 횡방향 안정성 향상을 위한 통합섀시 제어 (Unified Chassis Control for Improvement of Vehicle Lateral Stability)

  • 조완기;이경수;윤장열
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1126-1131
    • /
    • 2007
  • This paper presents unified chassis control (UCC) to improve the vehicle lateral stability. The unified chassis control implies combined control of active front steering (AFS), electronic stability control (ESC) and continuous damping control (CDC). A direct yaw moment controller based on a 2-D bicycle model is designed by using sliding mode control law. A direct roll moment controller based on a 2-D roll model is designed. The computed direct yaw moment and the direct roll moment are generated by AFS, ESP and CDC control modules respectively. A control authority of the AFS and the ESC is determined by tire slip angle. Computer simulation is conducted to evaluate the proposed integrated chassis controller by using the Matlab, simulink and the validated vehicle simulator. From the simulation results, it is shown that the proposed unified chassis control can provide with improved performance over the modular chassis control.

  • PDF

직접요오모멘트를 이용한 이륜조향차량의 비결합 제어기 설계 (Decoupling Control of 2WS Cars Using Direct Yaw Moment)

  • 최재원;조충래
    • 제어로봇시스템학회논문지
    • /
    • 제11권9호
    • /
    • pp.761-767
    • /
    • 2005
  • There exists a structural limit of 2WS cars that drivers would not like simultaneously to follow the desired path and attenuate moments resulting from disturbances because lateral acceleration and yaw rate are coupled inherently. In order to overcome the limit, the 4WS cars that have rear wheel steering as an additional input have been introduced. But the 4WS cars have disadvantages that much cost is required due to structural alteration, it is difficult to be used to the driving circumstances and tire performances are not efficient in nonlinear or large lateral acceleration ranges. Therefore, it is proposed that, in this paper, a robust controller is easy to apply to 2WS cars by using direct yaw moment, decouples lateral acceleration from yaw motion and is robust against disturbances and uncertainties of system parameters, and thus the proposed control method has the advantages of 4WS cars which can be achieved in 2WS cars.

인휠 구동 트레일링 암 형식 차량의 제자리 회전 조향 제어 연구 (A Study on the Pivot Steering Control of an In-Wheel Drive Vehicle with Trailing Arm Suspensions)

  • 김지웅;이경훈;우관제
    • 한국정밀공학회지
    • /
    • 제29권7호
    • /
    • pp.745-752
    • /
    • 2012
  • The pivot steering of an individual wheel motor drive vehicle is an effective steering maneuver in the narrow road, but it has become a matter of concern that the torque input of each wheel is very difficult to determine. In this study, the independent yaw moment control was proposed for the smooth pivot steering control of an in-wheel drive vehicle. For this control method, the vertical forces of tires were estimated from the trailing arm dynamic model, and the yaw moments of individual wheels were calculated from the vehicle dynamic model. Dynamic simulation results showed that the independent yaw moment control was much more effective on the minimization of the instabilities of pivot steering in comparison with the conventional direct yaw moment control with yaw rate feedback.

자율주행 차량의 충돌회피 차선변경 제어 알고리즘 개발과 HILS 시험 (A Lane-change Collision Avoidance Algorithm for Autonomous Vehicles and HILS(Hardware-In-the-Loop Simulation) Test)

  • 류제하;김종협
    • 한국자동차공학회논문집
    • /
    • 제7권5호
    • /
    • pp.240-248
    • /
    • 1999
  • This paper presents a lane-change collision avoidance control algorithm for autonomous vehicles that will be used in AHS(Automated Highway System). In the proposed control algorithm, nominal control inputs are generated by solving the inverse vehicle dynamic equations of motion for a lane-change maneuver. In addition, a corrective steering input from preview as well as DYC (Direct Yaw Moment Control) may be included to reduce unpredictable errors and to insure yaw directional stability, respectively. The performance of the algorithm is evaluated with an ABS HILS system which consist of 17 DOF vehicle model and real ABS hardware parts. The HILS simulation results show that the proposed algorithm may be used for emergency lane-change maneuvers for autonomous vehicles.

  • PDF

차량 안정성 향상을 위한 제어기 설계 (Design of Control Logics for Improving Vehicle Dynamic Stability)

  • 허승진;박기홍;이경수;나혁민;백인호
    • 한국자동차공학회논문집
    • /
    • 제8권5호
    • /
    • pp.165-172
    • /
    • 2000
  • The VDC(Vehicle Dynamic Control) is a control system whose target is to improve stability of a vehicle under lateral motion. A lateral vehicle motion, especially on a slippery road, can lead to a hazardous situation, and the situation can even worsen by the driver`s inappropriate response. In this paper, two VDC systems, a fuzzy-based controller and an LQR-based controller have been developed. The controllers take as input the yaw rate and the sideslip angle of either body or rear wheel, and they yield the direct yaw moment signal by which the vehicle can gain stability during cornering. Simulations have been conducted to evaluate the performance of the control system. The results indicated that the controllers can successfully improve vehicle stability under potentially dangerous driving conditions.

  • PDF

자세 제어 장치와 능동 후륜 조향을 이용한 통합 섀시 제어 (Integrated Chassis Control with Electronic Stability Control and Active Rear Steering)

  • 임성진
    • 대한기계학회논문집A
    • /
    • 제38권11호
    • /
    • pp.1291-1297
    • /
    • 2014
  • 본 논문에서는 자세 제어 장치와 능동 후륜 조향을 이용한 통합 섀시 제어를 제안한다. 제어에 필요한 요 모멘트를 만들어 내기 위해 직접 요 모멘트 제어 방법을 이용한다. 가중 역행렬 기반 제어할당 방법을 이용하여 제어 요 모멘트를 자세 제어 장치의 제동력과 능동 후륜 조향의 조향각으로 분배한다. 가중 역행렬 기반 제어 할당 방법에 가변 가중치를 도입하여 다양한 구동기 조합을 표현하고 차량의 속도를 높이기 위해 시뮬레이션을 이용하여 가변 가중치를 최적화한다. 차량 시뮬레이션 패키지인 CarSim 에서 시뮬레이션을 수행하여 제안된 방법이 차량의 조종안정성과 횡방향 안정성을 향상시킨다는 사실을 검증한다.

INTEGRATED VEHICLE CHASSIS CONTROL WITH A MAIN/SERVO-LOOP STRUCTURE

  • Li, D.;Shen, X.;Yu, F.
    • International Journal of Automotive Technology
    • /
    • 제7권7호
    • /
    • pp.803-812
    • /
    • 2006
  • In order to reduce the negative effects of dynamic coupling among vehicle subsystems and improve the handling performance of vehicle under severe driving conditions, a vehicle chassis control integration approach based on a main-loop and servo-loop structure is proposed. In the main-loop, in order to achieve satisfactory longitudinal, lateral and yaw response, a sliding mode controller is used to calculate the desired longitudinal, lateral forces and yaw moment of the vehicle; and in the servo-loop, a nonlinear optimizing method is adopted to compute the optimal control inputs, i.e. wheel control torques and active steering angles, and thus distributes the forces and moment to four tire/road contact patches. Simulation results indicate that significant improvement in vehicle handling and stability can be expected from the proposed chassis control integration.

차량 운전조건과 속도변화를 고려한 요우모멘트제어 (The Direct Yaw-Moment Control regarding to control the vehicle handling condition)

  • 장영진;남광희
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2013년도 추계학술대회 논문집
    • /
    • pp.69-70
    • /
    • 2013
  • By using differential force between left and right wheel, lateral motion can be controlled known as Direct Yaw-moment Control (DYC). In previous researches, DYC control is proposed to increase the stability of the vehicle, but maneuverability has not been discussed sufficiently. The car handling condition which is called the index parameter of maneuverability is dependent on the vehicle velocity and steering angle. To achieve the desired vehicle's cornering path, the car handling condition must be considered sufficiently. In this paper, the novel DYC method is proposed which gives the car handling condition regardless of the longitudinal speed. The proposed controller is based on the PI controller to feedback the curvature parameter. The controlled system shows the advantages of DYC regarding to the reference trajectory by the dual motor system. With respect to the uncontrolled model, the effectiveness of the proposed method is validated by numerical examples.

  • PDF

자동차의 주행성능 향상을 위한 DYC 4WS 제어방법에 관한 연구 (A Study on the DYC 4WS Control Method for Improving the Dynamic Characteristics of Vehicle)

  • 김형내;김석일;김동룡;김건상
    • 한국자동차공학회논문집
    • /
    • 제6권2호
    • /
    • pp.1-11
    • /
    • 1998
  • The 4WS system is usually developed to improve the maneuverability at low speed and the straight line stability at high speed, but it is found to have the severe understeer characteristics at high speed. Therefore a 4WS vehicle requires to turn the steering wheel much more than a 2WS vehicle at high speeds even a driver goes through the same curved road. In this study, to enhance the cornering performance of the 4WS vehicle at high speed, a DYC 4WS system is proposed based on the nonlinear 4WS system and direct yaw moment control system. Especially the proposed DYC 4WS system is able to realize a zero side slip angle for vehicles and a cornering performance similar to the 2WS vehicle at high speed.

  • PDF

3자유도 차량모델 기반 차량 안정성 제어 알고리듬 설계 (Design of Vehicle Stability Control Algorithm Based on 3-DOF Vehicle Model)

  • 정태영;이경수
    • 한국자동차공학회논문집
    • /
    • 제13권1호
    • /
    • pp.83-89
    • /
    • 2005
  • This paper presents vehicle stability control algorithm based on 3-DOF vehicle model. The brake control inputs have been directly derived from the sliding control law based on a three degree of freedom plane vehicle model with differential braking. The simulation has performed using a full nonlinear 3-dimensional vehicle model and the performance of the controller has been compared to that of a direct yaw moment controller. Simulation results show that the proposed controller can provide a vehicle with better performance than conventional controller with respect to brake actuation without compromising stability at critical driving conditions.