DOI QR코드

DOI QR Code

Integrated Chassis Control with Electronic Stability Control and Active Rear Steering

자세 제어 장치와 능동 후륜 조향을 이용한 통합 섀시 제어

  • Yim, Seongjin (Dept. of Mechanical and Automotive Engineering, Seoul Nat'l Univ. of Sci. and Tech.)
  • 임성진 (서울과학기술대학교 기계.자동차공학과)
  • Received : 2014.03.11
  • Accepted : 2014.08.01
  • Published : 2014.11.01

Abstract

This paper proposes integrated chassis control (ICC) with electronic stability control (ESC) and active rear steering (ARS). Direct yaw moment control is used to generate a control yaw moment. A weighted pseudo-inverse-based control allocation (WPCA) method is adopted to distribute the control yaw moment into tire forces, generated by ESC and ARS. Simulation-based tuning of variables weights in the WPCA is used to enhance the yaw moment distribution performance. Simulations using the vehicle simulation software $CarSim^{(R)}$ show that the proposed ICC is effective in improving maneuverability and lateral stability.

본 논문에서는 자세 제어 장치와 능동 후륜 조향을 이용한 통합 섀시 제어를 제안한다. 제어에 필요한 요 모멘트를 만들어 내기 위해 직접 요 모멘트 제어 방법을 이용한다. 가중 역행렬 기반 제어할당 방법을 이용하여 제어 요 모멘트를 자세 제어 장치의 제동력과 능동 후륜 조향의 조향각으로 분배한다. 가중 역행렬 기반 제어 할당 방법에 가변 가중치를 도입하여 다양한 구동기 조합을 표현하고 차량의 속도를 높이기 위해 시뮬레이션을 이용하여 가변 가중치를 최적화한다. 차량 시뮬레이션 패키지인 CarSim 에서 시뮬레이션을 수행하여 제안된 방법이 차량의 조종안정성과 횡방향 안정성을 향상시킨다는 사실을 검증한다.

Keywords

References

  1. Furukawa, Y., Yuhara, N., Sano, S., Takeda, H. and Matsushita, Y., 1989, "A Review of Four-Wheel Steering Studies from the Viewpoint of Vehicle Dynamics and Control," Vehicle System Dynamics, Vol. 18, pp.151-186. https://doi.org/10.1080/00423118908968917
  2. Nissan Motor Company, 2006, "4 Wheel Active Steer (4WAS)," www.nissan-global.com/EN.
  3. Lv, H.M., Chen, N. and Li, P., 2004, "Multi-objective $H_{\infty}$ Optimal Control for Four-Wheel Steering Vehicle based on Yaw Rate Tracking," Proceedings of IMechE, Part D: Journal of Automobile Engineering, Vol.218, No.10, p.1117-1123. https://doi.org/10.1177/095440700421801006
  4. Hirano, Y. and Fukatani, K., 1996, "Development of Robust Active Rear Steering Control," Proceedings of the International Symposium on Advanced Vehicle Control, AVEC'96, pp.359-376.
  5. Nagai, M., Hirano, Y. and Yamanaka, S., 1997, "Integrated Control of Active Rear Wheel Steering and Direct Yaw Moment Control," Vehicle System Dynamics, Vol.27, No.5-6, pp.357-370. https://doi.org/10.1080/00423119708969336
  6. Cui, Z.H., Hu, R.F. and Ye, H.W., 2008, "Handling Performance for Active Rear-Wheel Steering Vehicle Robust Control," Proceedings of the IEEE International Conference on Automation and Logistics, pp.191-195, Qingdao, China.
  7. Yim, S., 2014, "Fault-Tolerant Yaw Moment Control with Steer- and Brake-by-Wire Devices," International Journal of Automotive Technology, Vol. 15, No. 3, pp. 463-468. https://doi.org/10.1007/s12239-014-0048-0
  8. Rajamani, R., 2006, Vehicle Dynamics and Control, New York, Springer.
  9. Uematsu, K. and Gerdes, J.C., 2002, "A Comparison of Several Sliding Surfaces for Stability Control," AVEC2002, Japan.
  10. Wang, J. and Longoria, R.G., 2006, "Coordinated Vehicle Dynamics Control with Control Distribution," Proceedings of the 2006 American Control Conference, Minneapolis, Minnesota, USA, pp.5348-5353.
  11. Yim, S., Choi, J. and Yi, K., 2012, "Coordinated Control of Hybrid 4WD Vehicles for Enhanced Maneuverability and Lateral Stability," IEEE Transactions on Vehicular Technology, Vol. 61, No. 4, pp.1946-1950. https://doi.org/10.1109/TVT.2012.2188921
  12. Mechanical Simulation Corporation, 2001, CarSim User Manual Version 5.

Cited by

  1. Adaptive Algorithms for Yaw Moment Distribution with ESC and ARS vol.40, pp.12, 2016, https://doi.org/10.3795/KSME-A.2016.40.12.997
  2. Direct tire force generation algorithm based on non-iterative nonlinear inverse tire model vol.18, pp.6, 2017, https://doi.org/10.1007/s12239-017-0096-3