• Title/Summary/Keyword: direct tensile strength

Search Result 248, Processing Time 0.032 seconds

An Experimental Study on the Bond Failure Behavior between Parent Concrete and CFM (콘크리트와 탄소섬유메쉬의 부착파괴 거동에 관한 실험적 연구)

  • 오재혁;성수용;한병찬;윤현도;서수연;김태용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.965-970
    • /
    • 2002
  • The strengthening of concrete structures in situ with externally bonded carbon fiber is increasingly being used for repair and rehabilitation of existing structures. Carbon fiber is attractive for this application due to its good tensile strength, resistances to corrosion, and low weight. Generally bond strength and behavior between concrete and carbon fiber mesh(CFM) is very important, because of the enhanced bond of CFM. Therefore if bond strength is sufficient, it will be expected to enhance reinforcement effect. If insufficient, reinforcement effect can not be enhanced because of bond failure between concrete and CFM. This study is to investigate the bond strength of CFM to the concrete using direct pull-out test and tensile-shear test. The key variables of the experiment are the location of clip, number of clips and thickness of cover mortar. The general results indicate that the clip anchorage technique for increasing bond strength with CFM appear to be effective to maintain the good post-failure behavior.

  • PDF

Bond Strength and Durability of Spray Mortar Purposed for Repair (유지보수용 스프레이 모르타르의 부착강도 및 내구성)

  • Yun, Kyong-Ku;Kim, Seong-Kwon;Lee, Wan-Sung
    • Journal of Industrial Technology
    • /
    • v.33 no.A
    • /
    • pp.101-107
    • /
    • 2013
  • The purpose of this study was to investigate bond strength between substrate and HES-LMS mortar, durability of HES-LMS mortar with latex content(0%, 5%, 10%). To measure the bond strength, the direct tensile test based on uniaxial tensile test was used, which was proposed by Kuhlman(1990). Also, Resistance for water permeability, water absorption and image analysis for air void system were conducted to estimating durability of HES-LMS mortar.

  • PDF

Constitutive property behavior of an ultra-high-performance concrete with and without steel fibers

  • Williams, E.M.;Graham, S.S.;Akers, S.A.;Reed, P.A.;Rushing, T.S.
    • Computers and Concrete
    • /
    • v.7 no.2
    • /
    • pp.191-202
    • /
    • 2010
  • A laboratory investigation was conducted to characterize the constitutive property behavior of Cor-Tuf, an ultra-high-performance composite concrete. Mechanical property tests (hydrostatic compression, unconfined compression (UC), triaxial compression (TXC), unconfined direct pull (DP), uniaxial strain, and uniaxial-strain-load/constant-volumetric-strain tests) were performed on specimens prepared from concrete mixtures with and without steel fibers. From the UC and TXC test results, compression failure surfaces were developed for both sets of specimens. Both failure surfaces exhibited a continuous increase in maximum principal stress difference with increasing confining stress. The DP tests results determined the unconfined tensile strengths of the two mixtures. The tensile strength of each mixture was less than the generally assumed tensile strength for conventional strength concrete, which is 10 percent of the unconfined compressive strength. Both concretes behaved similarly, but Cor-Tuf with steel fibers exhibited slightly greater strength with increased confining pressure, and Cor-Tuf without steel fibers displayed slightly greater compressibility.

Effect of Repair Width on Mechanical Properties of 630 Stainless Steel Repaired by Direct Energy Deposition Process (직접 에너지 적층 공정을 이용한 보수 공정에서 보수 폭에 따른 기계적 특성 관찰)

  • Oh, Wook-Jin;Shin, Gwang-Yong;Son, Yong;Shim, Do-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.3
    • /
    • pp.42-50
    • /
    • 2020
  • This study explores the effects of repair width on the deposition characteristics and mechanical properties of stainless steel samples repaired using direct energy deposition (DED). In the DED repair process, defects such as pores and cracks can occur at the interface between the substrate and deposited material. In this study, we changed the width of the pre-machined zone for repair in order to prevent cracks from occurring at the inclined surface. As a result of the experiment, cracks of 10-40 ㎛ in length were formed along the inclined slope regardless of the repair width. Yield and tensile strength decreased slightly as the repair width increased, but the total and uniform elongation increased. This is due to the orientation of the crack. For specimens with a repair width of 20 mm, yield and tensile strength were 883 MPa and 1135 MPa, respectively. Total and uniform elongations were 14.3% and 8.2%, respectively. During observation of the fracture specimens, we noted that the fracture of the specimen with an 8 mm repair width occurred along the slope, whereas specimens with 14 mm and 20 mm repair depths fractured at the middle of the repaired region. In conclusion, we found that tensile properties were dependent upon the repair width and the inclination of the crack occurred at the interface.

A Study on Direct Bonding of 3C-SiC Wafers Using PECVD Oxide (CVD 절연막을 이용한 3C-SiC기판의 직접접합에 관한 연구)

  • 정연식;류지구;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.164-167
    • /
    • 2002
  • SiC direct bonding technology is very attractive for both SiCOI(SiC-on-insulator) electric devices and SiC-MEMS applications because of its application possibility in harsh environments. This paper presents on pre-bonding according to HF pre-treatment conditions in SiC wafer direct bonding using PECVD oxide. The characteristics of bonded sample were measured under different bonding conditions of HF concentration, and applied pressure. The 3C-SiC epitaxial films grown on Si(100) were characterized by AFM and XPS, respectively. The bonding strength was evaluated by tensile strength method. Components existed in the interlayer were analyzed by using FT-IR. The bond strength depends on the HF pre-treatment condition before pre-bonding (Min : 5.3 kgf/$\textrm{cm}^2$∼Max : 15.5 kgf/$\textrm{cm}^2$).

  • PDF

Calculation of Required Bond Strength for Bridge Deck Overlay Using Finite Element Analysis (유한요소해석을 이용한 교면포장의 필요부착강도 산정)

  • Kwon, Hyuck;Jang, Heung-Gyun;Jung, Won-Kyong;Kim, Dong-Ho;Yung, Kyong-Ku
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.191-196
    • /
    • 2002
  • The bonding strength of the interface between the actual bridge concrete deck and overlay was primarily affected by the shear that depended on the flexural behavior than pure tensile, but the field bonding test measured bonding strength by the pure tensile due to simplicity and field applicability. Therefore, the purpose this study was to evaluate the required direct bond strength for bridge deck overlay using Finite element analysis with the many variavles such as bridge deck types, span length, material properties, lanes, and loading types. The commercial program LUSAS was used in analysis. The analysis results were compared to the value of specification currently used in highway construction site.

  • PDF

Compressive and Tensile Strength Properties of Slurry Infiltrated Fiber Concrete (슬러리 충전 강섬유 보강 콘크리트의 압축 및 인장강도 특성)

  • Kim, Suk-Ki;Choi, Jin-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.703-708
    • /
    • 2006
  • The slurry infiltrated fiber concrete(SIFCON) is recognized as one of the most promising new construction materials. Compressive and direct tensile tests are performed to investigate the mechanical property of SIFCON. Hooked-end steel fibers are used in the mix with fiber volume fraction varied from 4% to 10%. The water/cement ratio is kept constant at 0.4. The amount of silica fume added is 10% by weight of cement and 0.5% of water reducing agent is added to improve the workability of the slurry. The test results in this study show that the compressive strength of SIFCON is about 1.59 to 2.68 times in comparison with the cement paste. Tensile strength is showed the enhancement of about 2.51 to 8.77 times. It is also observed that the toughness and ductility of SIFCON are increased significantly with the increasing in fiber volume fraction.

Proposal of Concrete Pull Off Bond Strength Measurement Method for Bridge Deck Overlay (교면 덧씌우기 콘크리트의 인발부착강도(引拔附着强度) 시험법(試驗法) 제안(提案))

  • Kim, Seong-Hwan;Kim, Dong-Ho;Kim, Hyun-Oh;Lee, Bong-Hak
    • Journal of Industrial Technology
    • /
    • v.23 no.A
    • /
    • pp.149-156
    • /
    • 2003
  • The development and maintenance of a sound bond are essential requirements of concrete repair and replacement. The bond property of a overlay to its substrate concrete during the lifetime is one of the most important performance requirements which should be quantified. A standard or a verified bond strength measurement method is required at field for screening, selecting materials and quality control for overlay or repair materials, but no test method has been adopted as a standard. In this study, a concrete pull off bond strength measurement method for field application is proposed and evaluated. This study compares the splitting tensile test, slant shear test, nipple pipe direct tensile test, flexural adhesion test, briquette tensile test, jumbo nail pull-out test and core pull-off test with their test procedures. From these comparison and investigation, core pull-off test is selected as a main topic of this study because of it's suitability for in situ testing, simplicities in field application and clearness at interface boundary condition. Thus, the proposed core pull off test is evaluated to be the most appropriate method for field application in a simple manner. The fracture surface and fracture mode could be easily determined by visual observation of failure surface of the field specimen. The core pull off test was found to be sensitive to surface condition and latex contents at latex modified concrete.

  • PDF

Bond Strength Properties of Latex Modified Concrete (라텍스 개질 콘크리트의 부착강도 특성)

  • 윤경구;이주형;최상릉;김기헌
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.5
    • /
    • pp.507-515
    • /
    • 2001
  • Significant improvements in bond strength between new and existing concrete can be achieved through the modification of the new concrete by latex. This study focuses on the investigation of bond strength of latex modified concrete. Pull-out bond test and uniaxial direct tensile bond test are adopted for evaluating the adhesion characteristics of latex modified concrete to conventional concrete substrate. The main experimental variables are test methods, latex-cement ratio, surface preparations and moisture levels. The results are as follows; The increase of latex-cement ratio substantially improves the adhesion between latex modified concrete and substrate. The effects of surface preparation at substrate into the bonding of latex modified concrete are quite different according to the conditions of surfaces. Thus, an adequate surface preparations are essential for good bond strength. Because the moisture level of the substrate may be critical to achieving bond, optimum moisture condition for a conventional concrete has evaluated in this study. The saturated condition of surface is the most appropriate moisture level among the considered, followed by dry condition and wet condition.

Development of Linear Annealing Method for Silicon Direct Bonding and Application to SOI structure (실리콘 직접 접합을 위한 선형가열법의 개발 및 SOI 기판에의 적용)

  • 이진우;강춘식;송오성;양철웅
    • Journal of Surface Science and Engineering
    • /
    • v.33 no.2
    • /
    • pp.101-106
    • /
    • 2000
  • SOI (Silicon-On-Insulator) substrates were fabricated with varying annealing temperature of $25-660^{\circ}C$ by a linear annealing method, which was modified RTA process using a linear shape heat source. The annealing method was applied to Si ∥ $SiO_2$/Si pair pre-contacted at room temperature after wet cleaning process. The bonding strength of SOI substrates was measured by two methods of Razor-blade crack opening and direct tensile test. The fractured surfaces after direct tensile test were also investigated by the optical microscope as well as $\alpha$-STEP gauge. The interface bonding energy was 1140mJ/m$^2$ at the annealing temperature of $430^{\circ}C$. The fracture strength was about 21MPa at the temperature of $430^{\circ}C$. These mechanical properties were not reported with the conventional furnace annealing or rapid thermal annealing method at the temperature below $500^{\circ}C$. Our results imply that the bonded wafer pair could endure CMP (Chemo-Mechanical Polishing) or Lapping process without debonding, fracture or dopant redistribution.

  • PDF