• Title/Summary/Keyword: direct kinematics

Search Result 70, Processing Time 0.025 seconds

Thermo-mechanically induced finite element based nonlinear static response of elastically supported functionally graded plate with random system properties

  • Lal, Achchhe;Jagtap, Kirankumar R.;Singh, Birgu N.
    • Advances in Computational Design
    • /
    • v.2 no.3
    • /
    • pp.165-194
    • /
    • 2017
  • The present work proposes the thermo mechanically induced statistics of nonlinear transverse central deflection of elastically supported functionally graded (FG) plate subjected to static loadings with random system properties. The FG plate is supported on two parameters Pasternak foundation with Winkler cubic nonlinearity. The random system properties such as material properties of FG material, external loading and foundation parameters are assumed as uncorrelated random variables. The material properties are assumed as non-uniform temperature distribution with temperature dependent (TD) material properties. The basic formulation for static is based on higher order shear deformation theory (HSDT) with von-Karman nonlinear strain kinematics through Newton-Raphson method. A second order perturbation technique (SOPT) and direct Monte Carlo simulation (MCS) are used to compute the nonlinear governing equation. The effects of load parameters, plate thickness ratios, aspect ratios, volume fraction, exponent, foundation parameters, and boundary conditions with random system properties are examined through parametric studies. The results of present approaches are compared with those results available in the literature and by employing direct Monte Carlo simulation (MCS).

A Study on Distinct Element Modelling of Dilatant Rock Joints (팽창성 암석절리의 개별요소 모델링에 관한 연구)

  • 장석부;문현구
    • Tunnel and Underground Space
    • /
    • v.5 no.1
    • /
    • pp.1-10
    • /
    • 1995
  • The behavior of a jointed rock mass depends mainly on the geometrical and mechanical properties of joints. The failure mode of a rock mass and kinematics of rock blocks are governed by the orientation, spacing, and persistence of joints. The mechanical properties such as dilation angle, shear strength, maximum closure, strength of asperities and friction coeffiient play important roles on the stability and deformation of the rock mass. The normal and shear behaviour of a joint are coupled due to dilation, and the joint deformation depends also on the boundary conditions such as stiffness conditons. In this paper, the joint constitutive law including the dilatant behaviour of a joint is numerically modelled using the edge-to-edge contact logic in distinct element method. Also, presented is the method to quantify the input parameters used in the joint law. The results from uniaxial compression and direct shear tests using the numeical model of the single joint were compared to the analytic results from them. The boundary effect on the behaviour of a joint is verified by comparing the results of direct shear test under constant stress boundary condition with those under constant stiffness boundary condition. The numerical model developed is applied to a complex jointed rock mass to examine its performance and to evaluate the effect of joint dilation on tunnel stability.

  • PDF

Deterioration in the fertilization capability of boar spermatozoa upon exposure to mancozeb

  • Adikari Arachchige Dilki Indrachapa Adikari;Seung-Tae Moon;Young-Joo Yi
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.2
    • /
    • pp.259-267
    • /
    • 2022
  • Although pesticides are recognized as necessary substances to improve agricultural production, exposure to pesticides is known to have a direct or indirect adverse effect on the reproductive function of mammals. The present study examines the effects of mancozeb, a well-known fungicide, on the fertility capacity of spermatozoa. Boar spermatozoa exposed to varying concentrations of mancozeb (0.01 - 0.5 µM) were evaluated for motility, motion kinetic parameters, viability, acrosome integrity and the generation of intracellular reactive oxygen species (ROS) after 30 min or 2 hrs of incubation. A significant reduction in the motility of spermatozoa was observed upon exposure to mancozeb. Similarly, there was a significant reduction of the motion kinematics of sperm treated with mancozeb as compared to untreated controls (p < 0.05). The sperm viability percentage and acrosome integrity also showed dose-dependent decreases upon exposure to mancozeb. High concentrations of mancozeb (0.2 - 0.5 µM) induced higher levels of intracellular ROS production, which resulted in the loss of the sperm membrane and decreased sperm motility due to oxidative stress. Taken together, the results here indicate that direct exposure to mancozeb affects the sperm fertility capacity. Hence, careful research that examines the interaction between reproduction and environmental toxins is crucial to prevent fertility disorders in animals.

Design of BLDC Motor Controller for Electric Power Wheelchair

  • Chu, Jun-Uk;Moon, In-Hyuk;Choi, Gi-Won;Ryu, Jei-Cheong;Mun, Mu-Seong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1509-1512
    • /
    • 2003
  • The electric power wheelchair needs to control motor torque and speed for responding to variable actions given by handling a joystick. In this paper a DSP-based BLDC motor controller using a single dc-link current sensor is presented for electric power wheelchair. It is composed by a DSP processor and three-phase inverter module. To control torque, high speed current control is achieved by the PI controller and pulse width modulation (PWM) signals with 25 kHz carrier frequency, which is performed by 200 ${\mu}sec$ cycle. The speed controller computes the new direct current reference from the speed error and the PI control equation. The displacement value by handling the joystick is converted to reference speeds of right and left wheel motors using nonholonomic wheelchair kinematics. Experimental results show that the presented control system is enough to implement a speed servo in wheelchair driving.

  • PDF

Large amplitude free vibration analysis of laminated composite spherical shells embedded with piezoelectric layers

  • Singh, Vijay K.;Panda, Subrata K.
    • Smart Structures and Systems
    • /
    • v.16 no.5
    • /
    • pp.853-872
    • /
    • 2015
  • Numerical analysis of large amplitude free vibration behaviour of laminated composite spherical shell panel embedded with the piezoelectric layer is presented in this article. For the investigation purpose, a general nonlinear mathematical model has been developed using higher order shear deformation mid-plane kinematics and Green-Lagrange nonlinearity. In addition, all the nonlinear higher order terms are included in the present mathematical model to achieve any general case. The nonlinear governing equation of freely vibrated shell panel is obtained using Hamilton's principle and discretised using isoparametric finite element steps. The desired nonlinear solutions are computed numerically through a direct iterative method. The validity of present nonlinear model has been checked by comparing the responses to those available published literature. In order to examine the efficacy and applicability of the present developed model, few numerical examples are solved for different geometrical parameters (fibre orientation, thickness ratio, aspect ratio, curvature ratio, support conditions and amplitude ratio) with and/or without piezo embedded layers and discussed in details.

DESIGN PROGRAM FOR THE KINEMATIC AND DYNAMIC CHARACTERISTICS OF THE BUS DOOR MECHANISM

  • KWON S.-J.;SUH M.-W.
    • International Journal of Automotive Technology
    • /
    • v.6 no.4
    • /
    • pp.403-411
    • /
    • 2005
  • The bus is regarded as one of the most frequently used public transportation systems, the research and development on driving stability, safety, and convenience for drivers and passengers has tremendously increased in recent days. This paper investigated the design of the bus door mechanism composed of an actuator (or motor) and linkages. The bus door mechanism is divided into many types according to the coupling of the linkages and the driving system. The mathematical models of all types of door mechanism have been constructed for computer simulation. To design the bus door mechanism, we developed a simulation program, which automates the kinematic and dynamic analysis according to the input parameters of each linkage and the driving system. Using this program, we investigated the design parameters that affect the kinematic and dynamic characteristics of the bus door mechanism under various simulation conditions. In addition, simple examples are examined to validate the developed program.

Walking gait generation and walking stability for the quadruped robot (4족 로봇의 보행 걸음새 생성 및 보행 안정성 판별)

  • 유창범;박검모;김영배
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.989-992
    • /
    • 2004
  • In general, it is known that walking stability of a quadruped is determined by its COG(Center of Gravity). In this paper, in order to know whether our virtual quadruped robot is applicable to the real quadruped robot, we simulated our virtual model using the data from the real robot‘s walking. We were able to evaluate the stride of quadruped based on direct and inverse kinematics and compared the stride of the simulation with real robot’s it. During the simulation we calculated the COG of the virtual model and evaluated the walking stability of real model.

  • PDF

A Study on Virtual Machine Design Simulator (가상 기구설계 시뮬레이터에 관한 연구)

  • Yim, Hong-Jae;Ju, Jae-Hwan;Sung, Sang-Jun;Jang, Si-Youl;Lee, Kee-Sung;Shin, Dong-Hoon;Jeong, Jae-Il;Lim, Si-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1559-1563
    • /
    • 2007
  • This paper presents a virtual machine design simulation program. Kinematics of various mechanisms can be modeled with 3 dimensional geometry and actuators. CAD data for any machine component can be easily imported in STL format. Machine components are assembled with kinematic joints simply by drag and drop function in virtual graphic simulator. Interference and collision of any component with other components can be identified during the motion simulation. Graphic user interface program is developed using Microsoft Direct X code. A precision micro stage system is demonstrated with the proposed virtual machine design simulator.

  • PDF

Analysis of Flame Generated Turbulence for a Turbulent Premixed Flame with Zone Conditional Averaging (영역분할조건평균법을 이용한 난류예혼합화염내 난류운동에너지 생성에 관한 연구)

  • Im, Yong Hoon;Huh, Kang Yul
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.4
    • /
    • pp.15-23
    • /
    • 2003
  • The zone conditional two-fluid equations are derived and validated against DNS database of a premixed turbulent flame. The conditional statistics of major flow variables are investigated to understand the mechanism of flame generated turbulence. The flow field in burned zone shows substantially increased turbulent kinetic energy, which is highly anisotropic due to reaction kinematics across thin f1amelets. The transverse component may be larger than the axial component for a distributed pdf of the flamelet orientation angle, while the opposite occurs due to redistribution of turbulent kinetic energy and flamelet orientation normal to the flow at the end of a flame brush. The major source or sink terms of turbulent kinetic energy are the interfacial transfer by the mean reaction rate and the work terms by fluctuating pressure and velocity on a flame surface. Ad hoc modeling of some interfacial terms may be required for further application of the two-fluid model in turbulent combustion simulations.

  • PDF

Reach volume의 측정과 로보트 기구학을 이용한 해석적 생성의 비교

  • 기도형;신용탁;강동석;정의승
    • Proceedings of the ESK Conference
    • /
    • 1996.10a
    • /
    • pp.232-237
    • /
    • 1996
  • When designing workplaces or arranging controls on panel, devices and controls should be placed within the reach of operator's arm or foot to guarantee effective performances. Most of the existing research on the reach volume were based on measurements of a few subject's arm reach, and limited to Caucasian and Chineses populations, and foot reach and trunk motion have been excluded. Range of human joint motion and that of two degrees of freedom motion are needed to generate reach volume analytically using the sweeping algorithm. Therefore, in this research, range of two degrees of reedom motion was measured, in which 47 college students were participated volumtarily as subjects. Second, new approximate algorithms generating reach volumes were suggested based on the robot kinematics, in which range of two degrees of freedom motion was considered. Our analytically generated reach volume showed statistically reasonable results when compared with that obtained from direct measurement.

  • PDF