DOI QR코드

DOI QR Code

Thermo-mechanically induced finite element based nonlinear static response of elastically supported functionally graded plate with random system properties

  • Lal, Achchhe (Department of Mechanical Engineering, S.V. National Institute of Technology Surat) ;
  • Jagtap, Kirankumar R. (Department of Mechanical Engineering, Sinhgad Institute of Technology and Science) ;
  • Singh, Birgu N. (Department of Aerospace Engineering, Indian institute of Technology)
  • Received : 2016.07.19
  • Accepted : 2017.04.15
  • Published : 2017.07.25

Abstract

The present work proposes the thermo mechanically induced statistics of nonlinear transverse central deflection of elastically supported functionally graded (FG) plate subjected to static loadings with random system properties. The FG plate is supported on two parameters Pasternak foundation with Winkler cubic nonlinearity. The random system properties such as material properties of FG material, external loading and foundation parameters are assumed as uncorrelated random variables. The material properties are assumed as non-uniform temperature distribution with temperature dependent (TD) material properties. The basic formulation for static is based on higher order shear deformation theory (HSDT) with von-Karman nonlinear strain kinematics through Newton-Raphson method. A second order perturbation technique (SOPT) and direct Monte Carlo simulation (MCS) are used to compute the nonlinear governing equation. The effects of load parameters, plate thickness ratios, aspect ratios, volume fraction, exponent, foundation parameters, and boundary conditions with random system properties are examined through parametric studies. The results of present approaches are compared with those results available in the literature and by employing direct Monte Carlo simulation (MCS).

Keywords

References

  1. Aboudi, J., Arnold, S.M. and Pindera M.J. (1994), "Response of functionally graded composites to thermal gradients", Compos. Eng., 4(1), 1-18. https://doi.org/10.1016/0961-9526(94)90003-5
  2. Alinia, M.M. and Ghannadpour, S.A.M. (2009), "Nonlinear analysis of pressure loaded FGM plates", Compos. Struct., 88(3), 354-359. https://doi.org/10.1016/j.compstruct.2008.04.013
  3. Birman, V. and Byrd, L.W. (2007), "Modeling and analysis of functionally graded materials and structures", Appl. Mech. Rev., 60(5), 195-216. https://doi.org/10.1115/1.2777164
  4. Chandrashekhar, M. and Ganguli, R. (2009),"Uncertainty handling in structural damage detection using fuzzy logic and probabilistic simulation", Mech. Syst. Sign. Proc., 23(2), 384-404. https://doi.org/10.1016/j.ymssp.2008.03.013
  5. Chang, T.P. and Chang, H.C. (1994),"Stochastic dynamic finite element analysis of a non uniform beam", J. Sol. Struct., 31(5), 587-597. https://doi.org/10.1016/0020-7683(94)90139-2
  6. Chandrashekhar, M. and Ganguli, R. (2010), "Nonlinear vibration analysis of composite laminated and sandwich plates with random material properties", J. Mech. Sci., 52(7), 874-891. https://doi.org/10.1016/j.ijmecsci.2010.03.002
  7. Fallah, A. and Aghdam, M. (2011), "Nonlinear free vibration and post buckling analysis of functionally graded beams on nonli-near elastic foundation", Euro. J. Mech. A/Sol., 30(4), 571-583. https://doi.org/10.1016/j.euromechsol.2011.01.005
  8. Ferreira, A.J.M., Batra, R.C., Roque, C.M.C., Qian, L.F. and Martins, P.S. (2005),"Static analysis of functionally graded plates using third-order shear deformation theory and a mesh less method", Compos. Struct., 69(4), 449-457. https://doi.org/10.1016/j.compstruct.2004.08.003
  9. Ghannadpour, S.A.M. and Alinia, M.M. (2006), "Large deflection behavior of functionally graded plates under pressure loads", Compos. Struct., 75(1), 67-71. https://doi.org/10.1016/j.compstruct.2006.04.004
  10. Halder, A. and Mahadevan, S. (2000), Probability, Statistics and Reliability Methods in Engineering Design, John Wiley & Sons Inc, New York, U.S.A.
  11. Huang, X.L. and Shen, H.S. (2004), "Nonlinear vibration and dynamic response of functionally graded plates in thermal environments", J. Sol. Struct., 41(9), 2403-2427. https://doi.org/10.1016/j.ijsolstr.2003.11.012
  12. Jagtap, K.R., Lal, A. and Singh, B.N. (2011), "Stochastic nonlinear free vibration analysis of elastically supported functionally graded materials plate with system randomness in thermal environment", Compos. Struct., 93(12), 3185-3199. https://doi.org/10.1016/j.compstruct.2011.06.010
  13. Jagtap, K.R., Lal, A. and Singh, B.N. (2012), "Stochastic nonlinear bending response of functionally graded material plate with random system properties in thermal environment", J. Mech. Mater. Des., 8(2), 149-167. https://doi.org/10.1007/s10999-012-9183-9
  14. Jagtap, K.R., Lal, A. and Singh, B.N. (2013), "Thermomechanical elas-tic postbuckling of functionally graded materials plate with random system propertie", J. Comput. Meth. Eng. Sci. Mech., 14(3),175-194. https://doi.org/10.1080/15502287.2012.711423
  15. Khabbaz, R.S., Manshadi, B.D. and Abedian, A. (2009), "Nonlinear analysis of FGM plates under pressure loads using the higher-order shear deformation theories", Compos. Struct., 89(3), 333-344. https://doi.org/10.1016/j.compstruct.2008.06.009
  16. Kitipornchai, S., Yang, J. and Liew, K.M. (2006), "Random vibration of functionally graded laminates in thermal environments", Comput. Meth. Appl. Mech. Eng., 195(9-12), 1075-1095. https://doi.org/10.1016/j.cma.2005.01.016
  17. Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B, 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9
  18. Kumar, R., Patil, H.S. and Lal, A. (2014), "Nonlinear flexural response of laminated composite plates of nonlinear elastic foundation with uncertain system properties under lateral pressure and hygrothermal loading: micromechanical model", J. Aeros. Eng., 27(3), 529-547. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000219
  19. Lal, A., Jagtap, K.R. and Singh, B.N. (2013), "Post buckling response of functionally graded materials plate subjected to mechanical and thermal loadings with random material properties", Appl. Math. Model. 37(7), 2900-2920. https://doi.org/10.1016/j.apm.2012.06.013
  20. Lal, A., Singh, B.N. and Kumar, R. (2007), "Natural frequency of laminated composite plate resting on an elastic foundation with uncertain system properties", J. Struct. Eng. Mech., 27(2), 199-222. https://doi.org/10.12989/sem.2007.27.2.199
  21. Lal, A., Singh, B.N. and Kumar R. (2009), "Effect of random system properties on thermal buckling analysis of laminated composite plates", Comput. Struct., 87(17), 1119-1128. https://doi.org/10.1016/j.compstruc.2009.06.004
  22. Lal, A., Saidane, N. and Singh, B.N. (2010a), "Stochastic hygrothermoe-lectro-mechanical loaded post buckling analysis of piezoelectric laminated cylindrical shell panels", Smart Struct. Syst., 9(6), 505-534. https://doi.org/10.12989/sss.2012.9.6.505
  23. Lal, A., Singh, B.N. and Kumar, R.(2007), "Natural frequency of lami-nated composite plate resting on an elastic foundation with uncertain system properties", J. Struct. Eng. Mech., 27(2), 199-222. https://doi.org/10.12989/sem.2007.27.2.199
  24. Lal, A., Singh, H. and Shegokar, N.L. (2012b), "FEM model for stochas-tic mechanical and thermal postbuckling response of functionally graded material plates applied to panels with circular and square holes having material randomness", J. Mech. Sci., 62(1), 18-33. https://doi.org/10.1016/j.ijmecsci.2012.05.010
  25. Lal, A., Kulkarni, N. and Singh B.N. (2015), "Stochastic Thermal post buckling response of elastically supported laminated piezoelectric composite plate using micromechanical approach", Curv. Lay. Struct., 2(1), 331-350.
  26. Ma, L.S. and Wang, T.J. (2003), "Nonlinear bending and post-buckling of a functionally graded circular plate under mechanical and thermal loadings", J. Sol. Struct., 40(13), 3311-3330. https://doi.org/10.1016/S0020-7683(03)00118-5
  27. Liu, W.K., Belytschko, T. and Mani, A. (1986), "Probabilistic finite elements for nonlinear structural dynamics", Comput. Meth. Appl. Mech. Eng., 56(1), 61-81. https://doi.org/10.1016/0045-7825(86)90136-2
  28. Murugan, S., Harursampath, D. and Ganguly, R. (2008), "Material uncertainty propagation in helicopter nonlinear aeroelastic response and vibration analysis, AIAA J., 46(9), 2332-2344. https://doi.org/10.2514/1.35941
  29. Na, K.S. and Kim, J.H. (2006), "Nonlinear bending response of functionally graded plates under thermal loads", J. Therm. Stress., 29, 245-261. https://doi.org/10.1080/01495730500360427
  30. Onkar, A.K. and Yadav, D. (2003),"Nonlinear response of composite laminated with random material properties under random loading", Compos. Struct., 64(4), 375-383.
  31. Onkar, A.K. and Yadav, D. (2005), "Forced nonlinear vibration of laminated composite plates with random material properties", Compos. Struct., 70(3), 334-342. https://doi.org/10.1016/j.compstruct.2004.08.037
  32. Onkar, A.K., Upadhyay, C.S. and Yadav, D. (2006),"Generalized buckling analysis of laminated plates with random material properties using stochastic finite elements", J. Mech. Sci., 48(7), 780-798. https://doi.org/10.1016/j.ijmecsci.2006.01.002
  33. Pandit, M.K., Singh, B.N. and Sheikh, A.H. (2010), "Stochastic free vibration response of soft core sandwich plates using an improved higher-order zigzag theory", J. Aeros. Eng., 23(1), 14-23. https://doi.org/10.1061/(ASCE)0893-1321(2010)23:1(14)
  34. Praveen, G.N. and Reddy, J.N. (1998),"Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates", J. Sol. Struct., 35(33), 4457-4476. https://doi.org/10.1016/S0020-7683(97)00253-9
  35. Pandit, M.K., Singh, B.N. and Sheikh, A.H. (2010),"Stochastic free vibration response of soft core sandwich plates using an improved higher-order zigzag theory", J. Aeros. Eng., 23(1), 14-23. https://doi.org/10.1061/(ASCE)0893-1321(2010)23:1(14)
  36. Reddy, J.N. and Chin, C.D. (1998),"Thermoelastical analysis of functionally graded cylinders and plates", J. Therm. Stress., 21(6), 593-629. https://doi.org/10.1080/01495739808956165
  37. Reddy, J.N. (2004), An Introduction to Nonlinear Finite Element Analysis, Oxford University Press, Oxford.
  38. Shankara, C.A. and Iyengar, N.G.R. (1996), "A C0 element for the free vibration analysis of laminated composite plates", J. Sound Vibr., 191(5), 721-738. https://doi.org/10.1006/jsvi.1996.0152
  39. Shegokar, N.L. and Lal, A. (2013a), "Stochastic nonlinear bending re-sponse of piezoelectric functionally graded beam subjected to thermoelectromechanical loadings with random material properties", Compos. Struct., 100, 17-33. https://doi.org/10.1016/j.compstruct.2012.12.032
  40. Shegokar, N.L. and Lal, A. (2013b), "Stochastic finite element nonlinear free vibration analysis of piezoelectric functionally graded beam subjected to thermo-piezoelectric loadings with material uncertainties", Meccan., 49(5), 1039-1068. https://doi.org/10.1007/s11012-013-9852-2
  41. Shegokar, N.L. and Lal, A. (2014), "Thermoelectromechanically induced stochastic post buckling response of piezoelectric functionally graded beam", J. Mech. Mater. Des., 10(3), 329-349. https://doi.org/10.1007/s10999-014-9246-1
  42. Singh, B.N., Yadav, D. and Iyengar, N.G.R. (2001),"Natural frequencies of composite plates with random material properties using higher order shear deformation theory", J. Mech. Sci., 43(10), 2193-2214. https://doi.org/10.1016/S0020-7403(01)00046-7
  43. Singh, B.N., Yadav, D. and Iyengar, N.G.R. (2003), "A C0 element for free vibration of composite plates with uncertain material properties", Adv. Compos. Mater., 11(4), 331-350.
  44. Shen, H.S. and Wang Z.X. (2010), "Nonlinear bending of FGM plates subjected to combined loading and resting on elastic foundations", Compos. Struct., 92(10), 2517-2524. https://doi.org/10.1016/j.compstruct.2010.02.010
  45. Shen, H.S. (2009), Nonlinear Analysis of Functionally Graded Materials Plate and Shells, CRC Press, Taylor and Frances Group, New York, U.S.A.
  46. Shen, H.S. and Wang, Z.X., (2010), "Nonlinear bending of FGM plates subjected to combined loading and resting on elastic foundations", Compos. Struct., 92(10), 2517-2524. https://doi.org/10.1016/j.compstruct.2010.02.010
  47. Shen, H.S. (2007), "Nonlinear thermal bending response of FGM plates due to heat conduction", Compos. Part B: Eng., 38(2), 201-215. https://doi.org/10.1016/j.compositesb.2006.06.004
  48. Singh, B.N., Lal, A. and Kumar, R. (2008), "Nonlinear bending response of laminated composite plates on nonlinear elastic foundation with uncertain system properties", Eng. Struct., 30(4), 1101-1112. https://doi.org/10.1016/j.engstruct.2007.07.007
  49. Shaker, A., Abdelrahman, W., Tawfik, M. and Sadek, E. (2008),"Stochastic finite element analysis of the free vibration of functionally graded material plates", Comput. Mech., 41(5), 707-714. https://doi.org/10.1007/s00466-007-0226-2
  50. Shen, H.S. (2009), Nonlinear Analysis of Functionally Graded Materials Plate and Shells, CRC Press, Taylor and Frances Group, New York, U.S.A.
  51. Shen, H.S. and Wang, Z.X. (2010), "Nonlinear bending of FGM plates subjected to combined loading and resting on elastic foundations", Compos. Struct., 92(10), 2517-2524. https://doi.org/10.1016/j.compstruct.2010.02.010
  52. Shi-Rong, L., Jing-Hua, Z. and Yong-Gang, Z. (2006), "Thermal post-buckling of functionally graded material Timoshenko beams", Appl. Math. Mech., 27(6), 803-810. https://doi.org/10.1007/s10483-006-0611-y
  53. Singh, B.N. and Lal, A. (2010), "Stochastic analysis of laminated composite plates on elastic foundation: The cases of post-buckling behavior and nonlinear free vibration", J. Press. Vess. Pipng., 87(10), 559-574. https://doi.org/10.1016/j.ijpvp.2010.07.013
  54. Singh, B.N., Lal, A. and Kumar, R. (2008), "Nonlinear bending response of laminated composite plates on nonlinear elastic foundation with uncertain system properties", Eng. Struct., 30(4), 1101-1112. https://doi.org/10.1016/j.engstruct.2007.07.007
  55. Singh, B.N., Yadav, D. and Iyengar, N.G.R. (2001), "Natural frequen-cies of composite plates with random material properties using higher order shear deformation theory", J. Mech. Sci., 43(10), 2193-2214. https://doi.org/10.1016/S0020-7403(01)00046-7
  56. Singh, B.N., Yadav, D. and Iyengar, N.G.R. (2003), "A C0 element for free vibration of composite plates with uncertain material properties", Adv. Compos. Mater., 11(4), 331-350.
  57. Singha, M.K., Prakash, T. and Ganapathi, M. (2011), "Finite element analysis of functionally graded plates under transverse load", J. Finit. Elem. Anal. Des., 47(4), 453-460. https://doi.org/10.1016/j.finel.2010.12.001
  58. Suresh, S. and Mortensen, A. (1998), Fundamentals of Functionally Graded Materials, IOM Communications Limited, London, U.K.
  59. Talha, M.D. and Singh, B.N. (2014), "Stochastic perturbation-based finite element for buckling statistics of FGM plates with uncertain material properties in thermal environments", Compos. Struct., 108, 823-833. https://doi.org/10.1016/j.compstruct.2013.10.013
  60. Singha, M.K., Prakash, T. and Ganapathi, M. (2011), "Finite element analysis of functionally graded plates under transverse load", J. Fin. Elem. Anal. Des., 47(4), 453-460. https://doi.org/10.1016/j.finel.2010.12.001
  61. William, H., Teukolsky, A.S., William, T.V. and Flannery, P.B. (1992), Numerical Recipes in Fortran, 2nd Edition, Cambridge University Press, Cambridge, U.K.
  62. Wanga, Z.X. and Shen, H.S. (2013), "Nonlinear dynamic response of sandwich plates with FGM face sheets resting on elastic foundations in thermal environments", Ocean Eng., 57(1), 99-110. https://doi.org/10.1016/j.oceaneng.2012.09.004
  63. Yang, J. and Shen, H.S. (2003), "Nonlinear bending analysis of shear deformable functionally graded plates subjected to thermo-mechanical loads under various boundary conditions", Compos.: Part B: Eng., 34(2), 103-115. https://doi.org/10.1016/S1359-8368(02)00083-5
  64. Yang, J., Liew, K.M. and Kitipornchai, S. (2005), "Stochastic analysis of compositionally graded plates with system randomness under static loading", J. Mech. Sci., 47(10), 1519-1541. https://doi.org/10.1016/j.ijmecsci.2005.06.006
  65. Yang, J., Kitipornchai, S. and Liew, K.M. (2005), "Second order statistic of the elastic buckling of functionally graded rectangular plates", Compos. Sci. Technol., 65(7), 1165-1175. https://doi.org/10.1016/j.compscitech.2004.11.012
  66. Zhang, Y., Chen, S., Lue, Q. and Liu, T. (1996), "Stochastic perturbation finite elements", Comput. Struct., 59(3), 425-429. https://doi.org/10.1016/0045-7949(95)00267-7
  67. Zhang, D.G. (2014), "Nonlinear bending analysis of FGM rectangular plates with various supported boundaries resting on two-parameter elastic foundations", Arch. Appl. Mech., 84, 1-20. https://doi.org/10.1007/s00419-013-0775-0
  68. Zhang, Y., Chen, S., Lue, Q. and Liu T. (1996), "Stochastic perturbation finite elements", Comput. Struct., 59(3), 425-429. https://doi.org/10.1016/0045-7949(95)00267-7

Cited by

  1. Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model vol.34, pp.5, 2017, https://doi.org/10.12989/scs.2020.34.5.643
  2. Effect of the rotation on the thermal stress wave propagation in non-homogeneous viscoelastic body vol.21, pp.1, 2017, https://doi.org/10.12989/gae.2020.21.1.001