• Title/Summary/Keyword: dimensionless velocity

Search Result 235, Processing Time 0.024 seconds

Resonance behavior of functionally graded carbon nanotube-reinforced composites shells with spinning motion and axial motion

  • Jia-Qin Xu;Gui-Lin She
    • Steel and Composite Structures
    • /
    • v.49 no.3
    • /
    • pp.325-335
    • /
    • 2023
  • The missile is affected by both spinning and axial motion during its movement, which will have a very adverse impact on the stability and reliability of the missile. This paper regards missiles as cylindrical shell structures with spinning and axial motion. In this article, the forced vibration of carbon nanotube-reinforced composites (CNTRCs) cylindrical shells with spinning motion and axial motion is investigated, in which the clamped-clamped and simply-simply supported boundary conditions are considered. The displacement field is described by the first-order shear theory, and the vibration equation is deduced by using the Euler-Lagrange equation, after dimensionless processing, the dimensionless equation of motion is obtained. The correctness of this paper is verified by comparing with the results of the existing literature, in which the simply-simply supported ends are taken into account. In the end, the effects of different parameters such as spinning velocity, axial velocity, carbon nanotube volume fraction, length thickness ratio and load position on the resonance behavior of cylindrical shells are given. It can be found that these parameters can significantly change the resonance of axially moving and rotating moving CNTRCs cylindrical shells.

Experimental study on the condensation of sonic steam in the underwater environment

  • Meng, Zhaoming;Zhang, Wei;Liu, Jiazhi;Yan, Ruihao;Shen, Geyu
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.987-995
    • /
    • 2019
  • Steam jet condensation is of great importance to pressure suppression containment and automatic depressurization system in nuclear power plant. In this paper, the condensation processes of sonic steam jet in a quiescent subcooled pool are recorded and analyzed, more precise understanding are got in direct contact condensation. Experiments are conducted at atmospheric pressure, and the steam is injected into the subcooled water pool through a vertical nozzle with the inner diameter of 10 mm, water temperature in the range of $25-60^{\circ}C$ and mass velocity in the range of $320-1080kg/m^2s$. Richardson number is calculated based on the conservation of momentum for single water jet and its values are in the range of 0.16-2.67. There is no thermal stratification observed in the water pool. Four condensation regimes are observed, including condensation oscillation, contraction, expansion-contraction and double expansion-contraction shapes. A condensation regime map is present based on steam mass velocity and water temperature. The dimensionless steam plume length increase with the increase of steam mass velocity and water temperature, and its values are in the range of 1.4-9.0. Condensation heat transfer coefficient decreases with the increase of steam mass velocity and water temperature, and its values are in the range of $1.44-3.65MW/m^2^{\circ}C$. New more accurate semi-empirical correlations for prediction of the dimensionless steam plume length and condensation heat transfer coefficient are proposed respectively. The discrepancy of predicted plume length is within ${\pm}10%$ for present experimental results and ${\pm}25%$ for previous researchers. The discrepancy of predicted condensation heat transfer coefficient is with ${\pm}12%$.

Experimental Study on the Velocity Structure of 2-D Density Current Induced by Selective Withdrawal (선택취수에 의한 2차원 밀도류의 흐름특성에 관한 실험적 연구)

  • Lyu, Siwan;Kim, Young Do;Cho, Gilje;Kwon, Jae Hyun;Lee, Nam Joo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.6
    • /
    • pp.825-832
    • /
    • 2009
  • A series of laboratory experiments has been performed to investigate the flow characteristics of 2-dimensional density currents induced by selective withdrawal, which is commonly suggested as a measure for removal of high turbid water from reservoirs. Saltwater has been used to simulate the density stratification over depth and PIV(Particel Image Velocimetry) for observing the velocity structure. Experimental conditions have been established according to Richardson number, which is the dimensionless number that expresses the ratio of potential to kinetic energy. From the experiments, the patterns of longitudinal decay of centerline axial velocity induced by the withdrawal have been distinguished from other experimental cases. The rate of longitudinal decay increase as the Richardson number increases. The variations of volumetric and momentum flux along the longitudinal axis have also shown to be dependent on Richardson number.

Dynamic characteristics of a simple beam subjected to prebending moments and moving loads with constant velocity (이동하중이 일정속도로 작용하는 단순보에서 prebending moment에 의한 동적특성)

  • 강진선;김찬묵
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.54-60
    • /
    • 1981
  • This paper presents the dynamic behaviour of a simple beam subjected to moving loads and prebending moments. The velocity of the moving loads is assumed constant, and the prebending moment is assumed to be M. The fundamental equation of motion of the beam is derived from the principle of virtual works and solved by using Duhamel's Integral. In this paper we found that the dimensionless deflection at the middle of beam was related with prebending moment(M), velocity(V) and magnitude of the moving load(F) ; that is y/y$_{0}$=1/1-.betha.$^{2}$-.pi.M/Fl The faster the velocity becomes, the deeper the maximum deflection becomes. And the maximum deflection at the middle of beam was occurred after the moving load passed the midpoint of beam.

  • PDF

A Study on Velocity Profiles and Critical Dean Number of Developing Transitional Unsteady Flows in a Curved Duct (곡관덕트의 입구영역에서 천이비정상유동의 속도분포와 임계딘수에 관한연구)

  • 이행남
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.862-870
    • /
    • 1998
  • In this paper an experimental investigation of characteristics of developing transitional unsteady flows in a square-sectional 180。 curved duct are presented. The experimental study using air is carried out to measure axial velocity profiles secondary flow velocity profiles and entrance length by using Laser Do ppler Velocimeter(LDV) system. The flow development is found to depend upon Dean number dimensionless angular frequency velocity amplitude ration and cur-vature ratio. Of special interest is the secondary flow generated by centrifugal effects in the plane of the cross-section of the duct. The secondary flows are strong and complicate at entrance region. The entrance length of transitional pulsating flow is obtained to 120。 of bended angle of duct in this experimental conditions.

  • PDF

A Study on the Axial Velocity and Secondary Flow Distributions of Turbulent Pulsating Flow in a Curved Duct (곡관덕트에서 난류맥동유동의 축방향 속도분포와 2차유동분포에 관한연구)

  • 손현철
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.127-133
    • /
    • 2000
  • In the present study flow characteristics of turbulent pulsating flow in a square-sectional 180。 curved duct are investigated experimentally. in order to measure axial velocity and secondary flow distributions experimental studies for air flow are conducted in a square-sectional $180^{\circ}$ curved duct by using the LDV system with the data acquisition and the processing system of the Rotating Machinery Resolver (RMR) and the PHASE software. The experiment is conducted on seven sections form the inlet(${\phi}=180^{\circ}$) at $30^{\circ}$ intervals of the duct. The results obtained from the experimentation are summarized as follows : In the axial velocity distributions of turbulent pulsating flow when the ratio of velocity amplitude(A1) is less than one there is hardly any velocity change in the section except near the wall and any change in axial velocity distribution along the phase. The secondary flow of turbulent pulsating flow has a positive value at the vend angle of $150^{\circ}$ without regard to the ratio of velocity amplitude. The dimensionless value of secondary flow becomes gradually weak and approaches zero in the region of bend angle $180^{\circ}$ without regard to the ratio of velocity amplitude.

  • PDF

Axial Direction Velocity and Secondary Flow Distributions of Turbulent Pulsating Flow in a Curved Duct (곡관덕트에서 난류맥동유동의 축방향 속도분포와 2차유동속도분포)

  • 손현철;이홍구;이행남;박길문
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.15-23
    • /
    • 2000
  • In the present study, flow characteristics of turbulent pulsating flow in the square-sectional $180^{\circ}$curved duct are investigated experimentally. In order to measure axial direction velocity and secondary flow distributions, experimental studies for air flow are conducted in the square-sectional $180^{\circ}$curved duct by using the LDV system with the data acquisition and the processing system of the Rotating Machinery Resolver (RMR) and the PHASE software. The experiment is conducted on seven sections form the inlet($\phi=0^{\circ}$) to the outlet($\phi=180^{\circ}$) at $30^{\circ}$intervals of the duct. The results obtained from the experimentation are summarized as follows : In the axial direction velocity distributions of turbulent pulsating flow, when the ratio of velocity amplitude (A1) is less than one, there is hardly any velocity change in the section except near the wall and in axial velocity distribution along the phase. The secondary flow of turbulent pulsating flow has a positive value at the bend angle of $150^{\circ}$regardless of the ratio of velocity amplitude. The dimensionless value of secondary flow becomes gradually weak and approaches zero in the region of bend angle $180^{\circ}$without regard to the ratio of velocity amplitude.

  • PDF

Experimental Study on the Adjustment Processes of Minning Pit in the Dredged Channels (준설하천의 웅덩이 적응에 관한 실험적 연구)

  • Jang, Chang-Lae;Jung, Kwan-Sue
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.7
    • /
    • pp.657-666
    • /
    • 2010
  • The adjustment processes of mining pits in the disturbed channels by sand or gravel mining were investigated by laboratory experiments in this study. The pit migrated with speed when the river bed was steep. The pit migrated slow and steady when the pit was filling with sand, but the pit migrated with speed after the filling processes was finished. The submerged angle of repose in the pit was nearly constant during the pit was filling. The pit was filled with sand with speed as the channel slope was increased. It took time for the pit to be filled with sand as the pit dimension was increased. This meant that the disturbed channels by sand or gravel mining to adjust the new environment was dependent on the slope of the channels and the dimension of the pits. The dimensionless pit length was short and the dimensionless pit depth was shallow as the time was increased. The dimensionless pit depth was shallow, but the dimensionless pit migration speed was increased as the dimensionless shear velocity and the migration speed of the pit were increased. The dimensionless pit depth was increased with the dimensionless bar migration speed. The shape of the pit was deformed and migrated downstream in accordance with the location and shape of the biased bar front which was developed upstream.

Air-side flow and heat transfer for a two-row lanced finned tube heat exchanger (2열 절개형 핀-관 열교환기의 공기측 유동 및 열전달 특성)

  • Bae, Jin-Hyo;Lee, Jae-Heon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.1
    • /
    • pp.79-92
    • /
    • 1998
  • A numerical study has been performed to obtain the air-side flow and heat transfer characteristics for a two-row lanced finned tube heat exchanger with 7 mm tube outer diameter. The increases of dimensionless local heat flux at the leading edge of slit and bottom surface of the fin were noticed. The temperature of air at downstream of the 2nd row of the lanced fin becomes more uniform than that of the plain fin because the mixing of energy increases by the slit and the side-slit. As the inlet velocity increases, the contribution of the 1st row to heat transfer decreases and that of 2nd row increases.

Hyetograph Model for Reservoir Operation During Flash Flood

  • Lee, Jae-Hyoung;Sonu, Jung-Ho;Shung, Dong-Kug
    • Korean Journal of Hydrosciences
    • /
    • v.3
    • /
    • pp.31-44
    • /
    • 1992
  • Precise run-off forecasting depends on the ability to predict quantitative rainfall intensity. The purpose of this study is to develop a stochastic model for the shori-term rainfall prediction. It is required for the model to predict rainfall intensities at all the telemetered rain-gauge locations simultaneously. All the model parameters, which are used in this work ; velocity and direction of storm movement, radial spectrum, and dimensionless time distribution of rainfall, are the results of the previous study. We formulated the model and operated it, so that in this study was analyzed particulary the influence of 4 dimensionless time distributions on the prediction and the influence of the model on run-off.

  • PDF