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Hyetograph Model for Reservoir Operation During

Flash Flood

Lee, Jae Hyoung*/Sonu,Jung Ho**/Chung, Dong Kug***

ABSTRACT / Precise run—off forecasting depends on the ability to predict quantitative
rainfall intensity. The purpose of this study is to develop a stochastic model for the sho-
rt—term rainfall prediction. It is required for the model to predict rainfall intensities at
all the telemetered rain—gauge locations simultaneously. Ali the model parameters,
which are used in this work; velocity and direction of storm movement, radial spectrum,
and dimensionless time distribution of rainfall, are the resulits of the previous study. We
formulated the model and operated it, so that in this study was analyzed particularly the
influence of 4 dimensionless time distributions on the prediction and the influence of
the model on run—off.

1. Literature Review

In the literature, there are two practices to predict the rainfall for the real-time flood
forcasting : meteorological methods for a short-term and hydrological methods for a long-te-
rm. This study is to suggest the hourly rainfall model based on the hydrological approach
under the assumption that the total rainfall is given.

There are three types of hydrological methods for rainfall prediction; that is, to be based
on the conditional probabilities, the covariance, and the time series analysis. Jamieson and
Wilkinson (1972) suggested a first-order autoregressive model for short-term rainfall pre-
diction to capture 45% of the variance of the original series. Other time series models could
be suggested such as non-stationary autoregressive integrated moving average (ARIMA) mo-
dels (Box & Jenkins,1970). However these methods needs a storm exterior characteristics
such as total depth and duration of event, and rainfall interior structure including the time

distribution of the total rainfall depth, the direction and velocity of the storm within each
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event. Although the detailed informations about a storm were obtained, the parameter esti-
mated statistically would be not usefull. Billuart and Tourasse (1980) pointed out two pro-
blems in the developement of the real—time flood prediction model. First, the telemetered
raingage data is not enough to allow parameter estimation. Second, the current methods for
short—term rainfall prediction are somewhat scarce. To overcome these problems, the sto-
chastic model based on the generated instead of the synthesized rainfall was proposed by
J.D. Creutin et. al (1980). But, in the Creutin’s model the spatial struture of the storm is
not considered.

Johnson and Bras (1980) developed a stochastic model for the short term (of the order of
one hour) rainfall prediction. This model predicts both rainfall rates at multiple locations
and multiple values of prediction lead simultaneously. Rainfall is assumed to be a non—stati-
onary process and evolve in time according to a non—stationary Markov model.

The purpose of this study is to develop a model for quantitative short—term rainfall pre-
diction based on both the Creutin’s and Bras’s method. Predictions must be made at multiple

points to provide some degree of spatial detail.

2. Approach and Assumption

Rainfall is a multidimensional process occurring in time and space. Spatial patterns of
variation of rainfall phenomena can be studied by means of stochastic processes over the
space considered.

Bras (1975) suggest that existing rainfall models can be classified as point, multivariate,
and areal or multidimensional rainfall models. Point rainfall models are to generate time-
—sequences of rainfall depth at a single point. Multivariate rainfall models consider several
raingages simultaneously and are intended to preserve the covariance structure of the histo-
rical rainfall data existing in those points. And multidimensional rainfall models characteri-
ze the rainfall phenomenon at every point over the area of interest. All of the above classifi-
cations may be subdivided into rainfall exterior models, which generate storm exterior char-
acteristics like total depth, duration of event and time between events, and rainfall interior
models, which generate the time distribution of the total rainfall depth, the direction and
velocity of the storm within each event.

This study presents the multidimensional non—stationary model of rainfall interiors. Rai-
nfall interior models are related to the motion of storm. As the phenomenon of rainfal is a
very complex process, thus some assumptions are needed for model formulation. The develo-
pment of the model is based on the following basic knowledge describing the behavior of
storms: 1) each storm moves with an average velocity, u , over the area of interest and follo-
ws certain trajectory. Individual disturbances within the storm move about the same veloci-

ty. 2) Water falling at any instant is correlated to what happened at previous times. 3) Co-
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rrelation rainfall of in space at any time is observed. 4) Spatial and time correlation are
neither separable nor independent. 5) Rainfall is a non—stationary process. The mean and

variance vary with time at all points in space. 6) It does not consider a storm aging.
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Figure 1. Rainfall prediction model
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At this point, it is assumed that the storm interior of an event with the given depth and

duration can be modeled as:
P(x,t) = ix )+ 7T+t (2.1)

where, i(x,t) : rainfall intensity at a point with coordinate vector
Xi at time t,

iu(xi, t): mean intensity at x and t ; where the mean value is taken over all possible storms
of the same chracteristics,

7 (xi, t): noisy residual obeying a certain covariance function in time and space,

Usually, mean intensity and noisy residual are obtained from historical rainfall data. The
predictions of future rainfall rates will be based on the generated values of rainfall from

equation (2—1). Thus, the storm can be modeled as:
0 = i) + r(x 1) (2-2)

where, i(éi ,t) terms is the rainfall intensity and r(x: ,t) is

residuals at time step t. The difference between equation (2—1) and equation (2—2) is how
to estimate the random variable 7 and r.

Once the expected rainfall intensity from equation (2—1) is given, these residual rainfall

intensity is calculated by the predicton model
3. Rainfall Generation Model

The undimensional mass curve is given in the interest area, and the mean temporal behavi-
or of the storm at all points will be all the same. Also, it is assumed that storm duration is
same in total everywhere. In order to represent all stations at the same time, an absolute
time scale is defined within the area. Starting time is the moment when the moving storm
hits the first point in the area (see Figure 2).

Assuming for simplicity that the storm moves parallel to the x, it is clear that :
tu(xi,t) = it — xi/u) (3-1)

where, ia(t) is average rainfall rate at time t where t is now the time it has been raining at a
given point, u is storm average velocity in x direction, and xi is x coordinate of point i.
The next step is to hypothesize the form of the covariance function of the noisy residuals.

In this work it is written as :
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E[7(x, )7 (xt")] =0 (xit) 0 (xj,t”)rc(E.,t';&,t”)

where E is expectation operator, ¢ is standard deviation of rainfall intensity at point x;
and time t, and rec(x,t’;x, t”) is general functional form of normalized covariance. ¢ (x:t)
corresponds to the variation around iu(x, t) and is obtainable from data in a similar way.

The same time translation is applicable, so
o (xi,t) = ga(t — xi/u) (3—2)
Equation (2—1) can then be expressed as:
i(xi ,t) = ialt — (xi/u)] + R(x,t) 7 alt—xi/u) (3-3)

where R(x, t) is standardized residual at point xi, and time t with zero mean and unit

variance.

Rainfall Intensity
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--------- . ——— : Standard Deviation

Time

Figure 2 Mean temporal behavior

The statistical behavior of the residual R(x,t) embodies the spatial and time correlation of
the rainfall process. The function r(é.,t';g,,t”) must then be defined. At this point, a basic
assumption about the behavior of rainfall is introduced. It is assumed that Taylor’s Hypo-
thesis of turbulence is valid within a storm. The above implies that correlation in time is
equivalent to that in space if time is transformed to space in the mean direction of storm
movement. The second assumption used is that rainfall intensities (or depth per time inte-

rval) have isotropic spatial correlation functions at any instant of time. Therefore,

re(xi,t"sxj,t”) = (V{yi—yiP+H({(xjFut)—(xi+ut")y ) (3—4)
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The spatial and time correlation of the generated values approaches equation (3—4) as the
number of harmonics goes to infinity. The spatial correlation of total depths over the area

are also preserved since

re(v) = § % § %o r/(yj—yi)PH{(xj+ut”)—(xi+ut")) dt’dt” (3—5)

where D is the storm duration.
A set of commonly used isotropic correlation functions(3—5) are single exponential or
quadratic exponential, Bessel form, etc.. The corresponding radial spectral densities and di-

stributions are, for example , single exponential as follows :

1

Glw) = =

(3-6)
The simplicity of the radial spectral distribution corresponding to the given correlation
functions allows the sampling of characteristic values by the inverse method. For example,

inverting the equation (3—6) results in :

1

A GG M 3-7)

w =
Generation of uniformly distributed values between 0 and 1 and their substitution for G(w)
in equation (3—7) results in a series of w values belonging to the population. Next, it is
sometimes desirable to obtain estimates of rainfall averaged over particular areas. The are-

al process can be defined through the relationship (Bras,1976):

€ () = VZ/N 3 COS{(x yiwi + 01l (3-8)

where, x represents a vector of coordinates(x1, x2) in R2; yi is a two dimensional random
variable (yil,yi2) on the unit circle; wi is a random variable whose distribution is the radial
spectral distribution funtion G(w) corresponding to the isotropic correlation function of €
(x) ; @1iis a uniformly distributed random angle between 0 and 2 ; and N is the finite numbe-
r of harmonics.

Mejia and Rodriguez—Iturbe (1974) have shown that the above process is homogeneous,
isotropic, and asymptotically ergodic, as N goes to o, and multinormal. It also has zero
mean, unit variance and, as N goes to correlation function with radial spectral distribution
corresponding to G(w). Bras(1976) suggested that the effect on the synthesis of rainfall is
not dominated as the number of harmonics N becomes larger than 50.

Since yi is equidistributed on the unit circle and x is a vector of coordinates, thus (3—8)

becomes:
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N
€ (xi,x2) =/ 2/N _gl COS[wi(x1COS A i + x:SIN A i)+ 4 i] (3-9)

where, Ai and #i are a uniformly distributed random variables, wi is a random variable
whose distribution is the radial spectral distribution funtion G(w). The term R(xi,t) in e-
quation (3—3) is the nomalrized residuals, and must be transformed to random fields €
(x1,x2) according to the above assumtion. Now, equation (3—9) is used in rainfall generation

with mean depth and storm duration.
4. Rainfall Prediction Model

The non—stationary process of rainfall is described in the previous section. It described
rainfall at all points in space(x,y) and time. The stated goal of this study is to produce pre-
dictions of future rainfall rates at specified locations. This naturally leads to a multivariate

description of rainfall. In addition, time will also be discretized. In short,
i(t) = m(t) + r(t) (4-1)

where, the term m(t) can be defined from i(xi ,t) of equation (2—1).
We can choose the dimensionless hyetograph obtained by historical data as m(t). Using a

diagonal standard deviation matrix (t), r(t) is written as:
r(t) = Z(t) €(t) (4-2)

It is notationally convenient to define a vector of residuals r(t) of equation (4—1) from e-

quation (4—2). That is,

r(t) = i(t) — m(t)
= Z(t) €(t) (4—3)

At issue is the dynamics of the residuall term r(t). The residual will be assumed to evolve in

time according to a non—stationary Markov model of the form:
r(t+ 7) = A(t, T)r(t) + B(t. 7 )W(t, 7) (4—4)

where , A(t, ) = N x N state transition matrix at time step t for a transition steps into
the future
W(t, ) = N x 1 vector of disturbances with zero mean value

B(t, 7) = N x N matrix giving the effect of the noise terms at time step t on the
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residuals at time step t+

It is to write only the one—step process:

r(t+1) = A(t,1)r(t) + B(t,1)W(t,1) (4-5)

For the prediction points, a measurement equation is written:

z(t) = q(t) — m(t)
= r(t) + V(1) (4—6)

where, q(t) = N x 1 vector of observed rainfall,
r(t) = N x 1 vector of true values of residual,
V(t) = N x 1 vector of measurement errors.

In addition to Egs. (4—4) and (4—6), the following assumptions are made:

E[W(t,1) WT(s,1)]=0 for t s 4-7)
E[W(t,1) V'(s)] =0 for all t,s 4-8)
E[V(t) VT(s)] =0 for t #=s (4-9)

In other words, the state noise is uncorrelated in time and with the measurement noise,
and the measurement noise is uncorrelated in time. Equations (4—4) — (4—9) form the classic
framework for the discrete Kalman filter. The equations operate recursively; that is, the

process forcasts only one time step of measurement at a time(Johson,1980). That is,
Mt 11t)= A@Dit | t) (4—10)

P(t + 1| t) = A(t,1)P(t | t)A"(t,1) + B(t,1) B'(t,1) (4—11)

= A(t,1) P(t | t) A"(t,1) + Q(t,1)

K(t) = P(t | t—1) {P(t | t=1) + E[V(t) V"()]} (4—12)

#t | t) = £t | t=1) + K(t) {z(t) — #(t | t—1) (4—13)

Ptity={I—-Kt} Pt|t—1) (4-14)
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where #(t | t) denotes the linear minimum variance estimate of the true residual vector
r(t:) based on all information available up to time step t2. It is necessary to define starting
conditions p(0 | 0) and #(0 | 0). Before it begins to rain, both the rainfall and mean value of
rainfall are zero; therefore, the residual is zero and #(0 | 0)=0.

The inital state error is taken to be the measurement error, i.e., P(0 | 0)=E[V(0)V'(0)].
Here, {z(t)—#(t | t—1)} are innovation . In order to implement the prediction, it is necessary
to estimate the terms A(t,1),B(t,1), E[W(t,1)WT(t,1)], and E[V(t)VT (t)].

5. Parameter Estimation

The model suggested above would be valid for the generation of rainfall interiors for a
specified family of storms with a given duration, average speed, direction and statistical de-
scription of intensities such as time varying mean, and multidimensional correlation struc-
ture.

Estimating the mean are in two ways. One is that the rainfall for the moving storm is
averged over space. The other is that a certain type for the total rainfall depth during the
given duration is determined from historical rainfall data. The first method.needs a detailed
information about storm. However, the current rainfall data is collected in increments of
cumulative amounts over time scales of 1 hour, this method can not be applied. In this study,
mean and variance is estimated from historical data (Eaglson,1970).

In the prediction model, error covariance matrices E[V(t)V(t)] can be estimated by the
accuracies of raingage system. In order to implement the prediction scheme it is necessary
to estimate two matrices of A(t) and B(t) describing the dynamics of the rainfall residuals.

On the practical side, these matrices are calculated using the covariance of historical rai-
nfall data. That is,

A(t) = S(tt—1)(t—1,t—1) ¢-1)
B(t) = S(t,t) — S(t,t—1)*"(t—1,t—1)S(t—1,t) (5-2)
where,
S(t,t) = Elr(t)r (t)], S(t,t—1) = E[r(t)r (t—1)]
And covariance function can be estimated as :

S(xi,t—1 ; xi,t) = o (t—1) o (t)fc(v)
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v = lyi— yif + [(xjtu(t) — xitut—1) 2 (5-3)

where, 0 (t) is defined in equation(3—2), fc(v) are based on the previous study(Lee,1989).
In this study, a single exponential function instead of the rc(v) is used for the operational

purpose. That is,
fe(v) = e (5—4)

where constant ¢ is obtained from sample covariance S. The S(t,t), S(t,t—1) matrix are deri-
ved from standard deviation and normalized covariance in the rainfall process, and then A(t)

and B(t) are calculated by equation (5—1) and (5—2).

6. Case Study

The suggested model is applied to Namdaechon located in upstream area of Daechung
basin. Namdaechon basin extends from latitude 35° 49" N to latitude 36° 04’ N and from
longitudes 127° 39" E to longitudes 127° 56" E. The slope of the basin is roughly one thirty
as estimated by Horton’s method. There are eight raingage stations in the Mujugun and one
stage gage station is installed at Muju bridge. Figure 3 show the location of the raingage

and the stage station.

QO : Rain Gage Station
A :@ Stage Gage Station

0. 4.

Figure 3 Raingage and stage station in the Namdae watershed
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The model is tested in the two ways; one of them is to select the smallest among the
standard deviations between the average intensity based on the observed rainfall and the
forcasted rainfall intensity distributions based on the undimensional mass curves, the other
is to select the rainfall pattern which is well suited to the observed runoff((D) among them;
the calculated runoff with the rainfall predicted by Weather Bureau(2), with the hourly
hyetograph predicted by the suggested model(@®) and with the spatially distributed hyeto-

graph derived from the given undimensional mass curve(®).

Table 1 Coordinates of raingage station

tation X(km) Y(km) remark
Muju 106.782 112.522 At a point
Muphung 119.478 109.043

Sulchun 115.652 1252 N 35° 51° 37"
Chuksang 106.609 106.956 E 127° 34' 02”7
Ansung 106.434 100.000

Bunam 100.000 107.826 X = 100km
Kuchon 114.608 103.478 = 100km
Sangkuck 116.609 105.913

Before the numerical experiment, we must analyze a runoff characteristics of this wate-
rshed. Presently, there are many methods for the runoff calculation. Since this study do not
concern with the exact flood discharge with the given rainfall, we used the time—area relati-
onship instead of the distributed parameter methods. To ignore the lag effect and loss of
rainfall, we chose the storm on the july 28, 1989 when the basin is fully saturated by ante-
cedent rainfall. And in order to consider the velocity and direction of storm movement, the
basin is divided by 0.677km x 0.677km grid using isochrones obtained from the previous
investigation (Chonbuk MuJuGun,1989). The NE 800 direction and 12km/hr velocity of sto-
rm is adopted in the previous study (KWRC,1990). In our example, the duration of storm is
10 hour and total rainfall rate is 40mm. The observed hyetograph spatially averaged was

applied to the runoff calculation. Figure 4 shows the calculated and observed hydrograph.

In the first case, rainfall intensity based on the undimensional hyetograph of four types
(KWRC,1990) are forcasted by the suggested model. Table 2 gives the standard deviations
between the observed and calculated rainfall for the four forecast of rainfall rate. The re-
suits of numerical experiments show that minimun standard deviations have occurred in the
2nd type, with its value of 2.262mm/hr, and maximun have occurred in the 4th type, with its
values of 3.432mm/hr.
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Figure 4 Hydrograph on the July 28, 1989.

Table 2 Standard deviations between calculated and observed rainfall

time Ist type 2nd type 3rd type 4th type
1 4.666 3.738 4.835 5.822
2 4.544 3.632 4.674 5.636
3 4.134 3.364 4.425 5.326
4 3.528 2919 4.305 5.200
5 2.997 2.662 4.080 4.970
6 3.036 2.557 3.736 4.650
7 2.400 2.494 2.799 2.652
8 1.771 1.938 2.039 1.834
9 1.352 1.374 1.400 1.436
10 0.208 0.205 0.205 0.227
11 0.000 0.000 0.000 0.000
average 2.603 2.262 2.954 3.432

In the second case, we compared the observed runoff with the runoff calculated using the

rainfall predicted by Weather Bureau as an input, with the hourly hyetograph predicted by
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the suggested model based on the third type, and with the spatially distributed hyetograph

derived from the given undimensional mass curve. Figure 5 shows the runoff obtained by

basin routing with each hyetograph.

350

I

Discharge (M3/Sec)

8

24

Time(hr)
O:1 A:20:3 X:4

Figure 5 The runoff by each hyetograph.

In the figure 5, O, @, @ and @ is dotted by rectangle, triangle, diamond and cross, re-
spectively . In the case of 2, 4mm/hr was constantly taken and it was uniformly distributed
over the basin. The maximum standard deviations have occurred in the case (2). Its value was
40.7m'/sec. In the suggested model, standard deviations varied from 20.1 m'/sec to 2.6m'/se-

¢, and the average of the variations was 11.3m'/sec. And in the undimensional mass curve, it

was 30.6m'/sec.
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