• Title/Summary/Keyword: dimensional deviation

Search Result 370, Processing Time 0.027 seconds

Efficient Designs to Develop a Design Space in Mixture Response Surface Analysis (혼합물 반응표면분석에서 디자인 스페이스 구축을 위한 효율적인 실험계획)

  • Chung, Jong Hee;Lim, Yong B.
    • Journal of Korean Society for Quality Management
    • /
    • v.48 no.2
    • /
    • pp.269-282
    • /
    • 2020
  • Purpose: The practical design for experiments with mixtures of q components is consisted in the four types of design points, vertex, center of edge, axial, and center points in a (q-1)-dimensional simplex space. We propose a sequential method for the successful construction of the design space in Quality by Design (QbD) by allowing the different number of replicates at the four types of design points in the practical design when the quadratic canonical polynomial model is assumed. Methods: To compare the mixture designs efficiency, fraction of design space (FDS) plot is used. We search for the practical mixture designs whose the minimal half-width of the tolerance interval per a standard deviation, which is denoted as d2, is less than 4.5 at 0.8 fraction of the design space. They are found by adding the different number of replicates at the four types of the design points in the practical design. Results: The practical efficient mixture designs for the number of components between three and five are listed. The sequential method to establish a design space is illustrated with the two examples based on the simulated data. Conclusion: The designs with the center of edge points replications are more efficient than those with the vertex points replication. We propose the sample size of at least 23 for three components, 28 for four components, and 33 for the five components based on the list of efficient mixture designs.

Analysis of the Current-Collection Performance of a High-Speed Train Using Finite Element Analysis Method (유한 요소 해석 기법을 이용한 고속 철도 차량의 집전 성능 해석)

  • Jung, Sung-Pil;Park, Tae-Won;Kim, Young-Guk;Park, Chan-Kyoung;Paik, Jin-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.827-833
    • /
    • 2011
  • In this study, a simulation model to estimate the current-collection performance of a high-speed train was developed by using a commercial finite element analysis software, SAMCEF. A three-dimensional springDdamperDmass model of a pantograph was created, and its reliability was validated by comparing the receptance of the model to that of the actual pantograph. The wave propagation speed of the catenary model was compared with the analytical wave propagation speed of the catenary system presented in the UIC 799 OR standard. The length of the droppers was controlled, and the pre-sag of the contact wire due to gravity was considered. The catenary and the pantograph were connected by using a contact element, and the contact force variation when the pantograph was moved at velocities of 300 km/h and 370 km/h was obtained. The average, standard deviation, maximum, and minimum values of the contact force were analyzed, and the effectiveness of the developed simulation model was examined.

Water Level Variation Analysis in the Cooling Water Discharge Channel of Power Plant due to Installation of Ocean Small Hydropower Plant (해양소수력 건설에 따른 방류수로의 수위 변화 특성 분석)

  • Kang, Keum-Seok;Kim, Ji-Young;Ryu, Moo-Sung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.5
    • /
    • pp.391-404
    • /
    • 2009
  • A small hydropower plant(SHP) using cooling water discharged from the power plant was constructed in Samcheonpo. This study presents predicted and measured hydrological data in the construction process of small hydropower plant in order to evaluate characteristics of water level variation of cooling water discharge channel which is a key factor in the design of SHP since the water level rise of channel is related to impact on circulating water system of the existing power plant. Various methods were applied for prediction of water level variation in the design stage from simple empirical formula to sophisticated 3-dimensional CFD method. Measured results reveal that mean value was similar between measured and predicted, but measured results were larger than predicted in deviation. Moreover, simple formula, i.e. standard weir equation and Honma equation, were more useful before installation of SHP, but sophisticated methods during operation of SHP.

A new method to measure the accuracy of intraoral scanners along the complete dental arch: A pilot study

  • Iturrate, Mikel;Lizundia, Erlantz;Amezua, Xabier;Solaberrieta, Eneko
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.6
    • /
    • pp.331-340
    • /
    • 2019
  • PURPOSE. The purpose of this study is to assess the accuracy of three intraoral scanners along the complete dental arch and evaluate the feasibility of the assessment methodology for further in vivo analysis. MATERIALS AND METHODS. A specific measurement pattern was fabricated and measured using a coordinate measuring machine for the assessment of control distances and angles. Afterwards, the pattern was placed and fixed in replica of an upper jaw for their subsequent scans (10 times) using 3 intraoral scanners, namely iTero Element1, Trios 3, and True Definition. 4 reference distances and 5 angles were measured and compared with the controls. Trueness and precision were assessed for each IOS: trueness, as the deviation of the measures from the control ones, while precision, as the dispersion of measurements in each reference parameter. These measurements were carried out using software for analyzing 3-dimensional data. Data analysis software was used for statistical and measurements analysis (α=.05). RESULTS. Significant differences (P<.05) were found depending on the intraoral scanner used. Best trueness values were achieved with iTero Element1 (mean from 10 ± 7 ㎛ to 91 ± 63 ㎛) while the worst values were obtained with Trios3 (mean from 42 ± 23 ㎛ to 174 ± 77 ㎛). Trueness analysis in angle measurements, as well as precision analysis, did not show conclusive results. CONCLUSION. iTero Element1 was more accurate than the current versions of Trios3 and True Definition. Importantly, the proposed methodology is considered reliable for analyzing accuracy in any dental arch length and valid for assessing both trueness and precision in an in vivo study.

Pharmacophore Design for Anti-inflammatory Agent Targeting Interleukin-2 Inducible Tyrosine Kinase (Itk)

  • Chandrasekaran, Meganathan;Sakkiah, Sugunadevi;Thangapandian, Sundarapandian;Namadevan, Sundaraganesan;Kim, Hyong-Ha;Kim, Yong-Seong;Lee, Keun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3333-3340
    • /
    • 2010
  • A three dimensional pharmacophore model was generated for the molecules which are responsible for anti-inflammatory activities targeting Interleukin-2 inducible tyrosine kinase (Itk). 16 structurally diverse molecules were selected as training set to generate the hypotheses using Discovery Studio v2.1. The best hypothesis, Hypo1, comprises two hydrogen bond acceptor (HBA), one hydrophobic aromatic (HA), one ring aromatic (RA) and shows high cost difference (63.71), high correlation coefficient (0.97) as well as low RMS deviation (0.81). Hypo1 has been further validated toward a test set, decoy set and Fischer's randomization method. Furthermore, Hypo1 was used to screen NCI and Maybridge databases. Finally, 2 hit molecules were identified as potential leads against Itk, which may be useful for future drug development.

Positional uncertainties of cervical and upper thoracic spine in stereotactic body radiotherapy with thermoplastic mask immobilization

  • Jeon, Seung Hyuck;Kim, Jin Ho
    • Radiation Oncology Journal
    • /
    • v.36 no.2
    • /
    • pp.122-128
    • /
    • 2018
  • Purpose: To investigate positional uncertainty and its correlation with clinical parameters in spine stereotactic body radiotherapy (SBRT) using thermoplastic mask (TM) immobilization. Materials and Methods: A total of 21 patients who underwent spine SBRT for cervical or upper thoracic spinal lesions were retrospectively analyzed. All patients were treated with image guidance using cone beam computed tomography (CBCT) and 4 degrees-of-freedom (DoF) positional correction. Initial, pre-treatment, and post-treatment CBCTs were analyzed. Setup error (SE), pre-treatment residual error (preRE), post-treatment residual error (postRE), intrafraction motion before treatment (IM1), and intrafraction motion during treatment (IM2) were determined from 6 DoF manual rigid registration. Results: The three-dimensional (3D) magnitudes of translational uncertainties (mean ${\pm}$ 2 standard deviation) were $3.7{\pm}3.5mm$ (SE), $0.9{\pm}0.9mm$ (preRE), $1.2{\pm}1.5mm$ (postRE), $1.4{\pm}2.4mm$ (IM1), and $0.9{\pm}1.0mm$ (IM2), and average angular differences were $1.1^{\circ}{\pm}1.2^{\circ}$ (SE), $0.9^{\circ}{\pm}1.1^{\circ}$ (preRE), $0.9^{\circ}{\pm}1.1^{\circ}$ (postRE), $0.6^{\circ}{\pm}0.9^{\circ}$ (IM1), and $0.5^{\circ}{\pm}0.5^{\circ}$ (IM2). The 3D magnitude of SE, preRE, postRE, IM1, and IM2 exceeded 2 mm in 18, 0, 3, 3, and 1 patients, respectively. No association were found between all positional uncertainties and body mass index, pain score, and treatment location (p > 0.05, Mann-Whitney test). There was a tendency of intrafraction motion to increase with overall treatment time; however, the correlation was not statistically significant (p > 0.05, Spearman rank correlation test). Conclusion: In spine SBRT using TM immobilization, CBCT and 4 DoF alignment correction, a minimum residual translational uncertainty was 2 mm. Shortening overall treatment time and 6 DoF positional correction may further reduce positional uncertainties.

Non-restraint Master Interface of Minimally Invasive Surgical Robot Using Hand Motion Capture (손동작 영상획득을 이용한 최소침습수술로봇 무구속 마스터 인터페이스)

  • Jang, Ik-Gyu
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.3
    • /
    • pp.105-111
    • /
    • 2016
  • Introduction: Surgical robot is the alternative instrument that substitutes the difficult and precise surgical operation; should have intuitiveness operationally to transfer natural motions. There are limitations of hand motion derived from contacting mechanical handle in the surgical robot master interface such as mechanical singularity, isotropy, coupling problems. In this paper, we will confirm and verify the feasibility of intuitive Non-restraint master interface which tracking the hand motion using infra-red camera and only 3 reflective markers without the hardware handle for the surgical robot master interface. Materials & methods: We configured S/W and H/W system; arranged 6 infra-red cameras and attached 3 reflective markers on hands for measuring 3 dimensional coordinate then we find the 7 motions of grasp, yaw, pitch, roll, px, py, pz. And we connected Virtual-Master to the slave surgical robot(Laparobot) and observed the feasibility. To verify the result of motion, we compare the result of Non-restraint master and that of clinometer (and protractor) through measuring 0~180 degree, 10degree interval, 1000 samples and recorded standard deviation stands for error rate of the value. Results: We confirmed that the average angle values of Non-restraint master interface is accurately corresponds to the result of clinometer (and protractor) and have low error rates during motion. Investigation & Conclusion: In this paper, we confirmed the feasibility and accuracy of 3D Non-restraint master interface that can offer the intuitive motion of non-contact hardware handle. As a result, we can expect the high intuitiveness, dexterousness of surgical robot.

Assessment of anterior-posterior jaw relationships in Korean adults using the nasion true vertical plane in cone-beam computed tomography images

  • Park, Youngju;Cho, Youngserk;Mah, James;Ahn, Janghoon
    • The korean journal of orthodontics
    • /
    • v.46 no.3
    • /
    • pp.163-170
    • /
    • 2016
  • Objective: The aims of this study were to investigate a simple method for assessing anterior-posterior jaw relationships via cone-beam computed tomography (CBCT) images taken in the natural head position (NHP) relative to the nasion true vertical plane (NTVP), and measure normative data in Korean adults with normal profiles. Methods: Subjects were selected from patients presenting for third molar extraction and evaluated as having normal profiles by three examiners. The CBCT images of 80 subjects (39 males, 41 females) were taken in the NHP according to Solow and Tallgren's method. Linear measurements of the A-point, B-point, and Pog were calculated relative to the NTVP. Student's t -test was used to assess sexual differences in these measurements. Results: The mean linear measurements of the A-point, B-point, and Pog relative to the NTVP were 0.18 mm (standard deviation [SD], 4.77 mm), -4.00 mm (SD, 6.62 mm), and -2.49 mm (SD, 7.14 mm) respectively in Korean males, and 1.48 mm (SD, 4.21 mm), -4.07 mm (SD, 6.70 mm) and -2.91 mm (SD, 7.25 mm) in Korean females respectively. There were no statistically significant differences between Korean males and females (p < 0.05). Conclusions: Three-dimensional CBCT analysis using the NTVP is a simple and reliable method for assessing anterior-posterior skeletal relationships.

Design and Analysis of a Red-Green-Blue Beam Combiner Based on Multimode Waveguides (다중 모드 도파로를 이용한 적녹청 빔 합파기 설계 및 분석)

  • Chung, Youngchul
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.2
    • /
    • pp.105-110
    • /
    • 2020
  • A compact beam combiner based on two-mode interference (TMI) in multimode waveguides is proposed, and its feasibility is shown through simulation with the three-dimensional beam propagation method. The input waveguides are separated by about 1 ㎛ at the interface with the multimode waveguide, so that the fabricated waveguide pattern is well repeated. The power transmission to the output port from the red, green, and blue input port is 93.5%, 94%, and 93%, respectively. When the wavelength deviation from a center wavelength is 10 nm, the power transmission is maintained to be greater than 90%. When the waveguide width error is 40 nm, the power transmission is maintained to be greater than 85% for all the three colors. The polarization dependence of the beam combiner is almost negligible, and its size is as tiny as 0.02 × 4 ㎟.

Three-dimensional observations of the incisive foramen on cone-beam computed tomography image analysis

  • Kim, Yeon-Tae;Lee, Jae-Hong;Jeong, Seong-Nyum
    • Journal of Periodontal and Implant Science
    • /
    • v.50 no.1
    • /
    • pp.48-55
    • /
    • 2020
  • Purpose: The purpose of this study was to utilize cone-beam computed tomography (CBCT) image analysis to obtain anatomical information related to the morphology of the incisive foramen to provide useful data regarding implant placement and clinical procedures such as anesthesia. Methods: The study included 167 patients who underwent CBCT scans over 20 years. Three components were measured: 1) the anteroposterior and mediolateral diameter of the incisive foramen, 2) the horizontal bone thickness anterior to the incisive foramen, and 3) the vertical bone height coronal to the incisive foramen. All measurements were expressed as mean±standard deviation and were analyzed by a single examiner. Results: The anteroposterior diameter of the incisive foramen was wider than the mediolateral diameter (P<0.001). The diameter of the incisive foramen in patients in whom the central incisors were present was smaller than that in those in whom at least one central incisor was absent, but no statistically significant difference between the groups was observed. The horizontal bone thickness in the patients with central incisors was statistically significantly larger than that in the patients without at least one central incisor (P<0.001). The same pattern was observed with regard to vertical height, but that difference was not statistically significant. Conclusions: The buccal bone thickness anterior to the incisive foramen was significantly decreased after central incisor loss. It is necessary to identify the morphology of the bone and the location of the incisive foramen via CBCT to avoid invasion of the incisive foramen and nasopalatine canal.