DOI QR코드

DOI QR Code

Design and Analysis of a Red-Green-Blue Beam Combiner Based on Multimode Waveguides

다중 모드 도파로를 이용한 적녹청 빔 합파기 설계 및 분석

  • Chung, Youngchul (Department of Electronics and Communications Engineering, Kwangwoon University)
  • Received : 2020.01.06
  • Accepted : 2020.02.19
  • Published : 2020.04.25

Abstract

A compact beam combiner based on two-mode interference (TMI) in multimode waveguides is proposed, and its feasibility is shown through simulation with the three-dimensional beam propagation method. The input waveguides are separated by about 1 ㎛ at the interface with the multimode waveguide, so that the fabricated waveguide pattern is well repeated. The power transmission to the output port from the red, green, and blue input port is 93.5%, 94%, and 93%, respectively. When the wavelength deviation from a center wavelength is 10 nm, the power transmission is maintained to be greater than 90%. When the waveguide width error is 40 nm, the power transmission is maintained to be greater than 85% for all the three colors. The polarization dependence of the beam combiner is almost negligible, and its size is as tiny as 0.02 × 4 ㎟.

다중 모드 도파로에서 두 모드 간섭(TMI)에 기반한 소형 빔 합파기가 제안되었으며, 그 가능성을 삼차원 BPM (beam propagation method) 시뮬레이션을 통해 확인하였다. 다중 모드 도파로와 접할 때, 입력 도파로들은 약 1 ㎛ 정도 분리되어 있기 때문에 제작 공정 후의 도파 구조 패턴의 재현성이 우수하다. 적색, 녹색 및 청색 입력 포트에서 출력 포트로의 파워 전달은 각각 93.5%, 94% 및 93%로 계산되었다. 각 색상의 파장 편차가 10 nm인 경우, 투과율은 90%보다 크게 유지되었고, 도파로 폭의 편차가 40 nm 정도일 때, 85% 이상의 파워 전달을 유지함을 알 수 있다. 또한, 제안된 합파기는 편광의존성이 거의 없으며, 0.02 × 4 ㎟ 정도의 크기로 작게 구현될 수 있다.

Keywords

References

  1. J. Kimura and M. Takaso, "New markets for projection system and ongoing breakthrough technology," in Proc. The International Display Workshop/Asia Displays (IDW/AD '12) (Kyoto, Japan, Dec. 2012), Vol. 19, p. 1355.
  2. J.-W. Pan, S.-H. Tu, C.-M. Wang, and J.-Y. Chang, "High efficiency pocket-size projector with a compact projection lens and a light emitting diode-based light source system," Appl. Opt. 47, 3406-3414 (2008). https://doi.org/10.1364/AO.47.003406
  3. M. Billinghurst and T. Starner, "New ways to manage information," Computer 32, 57-64 (1999). https://doi.org/10.1109/2.738305
  4. H. Tamura, "Steps toward a giant leap in mixed and augmented reality," in Proc. The International Display Workshop/Asia Displays (IDW/AD '12) (Kyoto, Japan, Dec. 2012), Vol. 19, p. 7.
  5. S.-C. Kim and E.-S. Kim, "A novel configuration of LCD projectors for efficient orthogonal polarization of two projected views," Opt. Commun. 266, 55-66 (2006). https://doi.org/10.1016/j.optcom.2006.04.018
  6. J. Miller, S. J. Woltman, and T. Byeman, "Laser based scanned beam display system," in Proc. The 1st Laser Display Conference (LDC'12) (Yokohama, Japan Apr. 2012), LDC6-2, pp. 25-27.
  7. Oculus VR, LLC., "Oculus Rift S," https://www.oculus.com/rift-s/ (Accessed date: Feb. 26, 2020).
  8. Samsung Electronics, "Gear VR with Controller (R3250)," https://www.samsung.com/sec/wearables/gear-vr-r3250 (Accessed date: Feb. 26, 2020).
  9. C. Shih and C. Tseng, "Dual-eyebox Head-up Display," in Proc. 3rd IEEE International Conference on Intelligent Transportation Engineering (ICITE) (National University of Singapore, Singapore, Sep. 2018), pp. 105-109.
  10. O. Utsuboya, T. Shimizu, and A. Kurosawa, "40.1: Invited Paper: Augmented reality head up display for car navigation system," SID Symp. Dig. Tech. Pap. 44, 551-554 (2013).
  11. A. Nakao, R. Morimoto, Y. Kato, Y. Kakinoki, K. Ogawa, and T. Katsuyama, "Integrated waveguide-type red-green-blue beam combiners for compact projection-type displays," Opt. Commun. 330, 45-48 (2014). https://doi.org/10.1016/j.optcom.2014.05.024
  12. R. Forber and E. Marom, "Symmetric directional coupler switches," IEEE J. Quantum Electron. 22, 911-919 (1986). https://doi.org/10.1109/JQE.1986.1073047
  13. Y. Chung, J. C. Yi, S. H. Kim, and S. S. Choi, "Analysis of a tunable multichannel two-mode-interference wavelengthdivision multiplexer/demultiplexer," IEEE J. Lightwave Technol. 7, 766-777 (1989). https://doi.org/10.1109/50.19112
  14. Y. Chung, "Red-green-blue beam combiner based on twomode interference," Curr. Opt. Photon. 3, 22-26 (2019). https://doi.org/10.3807/COPP.2019.3.1.022
  15. L. B. Soldano and E. C. M. Pennings, "Optical multi-mode interference devices based on self-imaging: principles and applications," IEEE J. Lightwave Technol. 13, 615-627 (1995). https://doi.org/10.1109/50.372474
  16. M. A. Khashan and A. Y. Nassif, "Dispersion of the optical constants of quartz and polymethyl methacrylate glasses in a wide spectral range: 0.2-3 ${\mu}m$," Opt. Commun. 188, 129-139 (2001). https://doi.org/10.1016/S0030-4018(00)01152-4
  17. H. Takahashi, Y. Hibino, Y. Ohmori, and M. Kawachi, "Polarization-insensitive arrayed-waveguide wavelength multiplexer with birefringence compensating film," IEEE Photon. Technol. Lett. 5, 707-709 (1993). https://doi.org/10.1109/68.219718