• Title/Summary/Keyword: dimension matrix

Search Result 248, Processing Time 0.025 seconds

Generalized Partially Double-Index Model: Bootstrapping and Distinguishing Values

  • Yoo, Jae Keun
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.3
    • /
    • pp.305-312
    • /
    • 2015
  • We extend a generalized partially linear single-index model and newly define a generalized partially double-index model (GPDIM). The philosophy of sufficient dimension reduction is adopted in GPDIM to estimate unknown coefficient vectors in the model. Subsequently, various combinations of popular sufficient dimension reduction methods are constructed with the best combination among many candidates determined through a bootstrapping procedure that measures distances between subspaces. Distinguishing values are newly defined to match the estimates to the corresponding population coefficient vectors. One of the strengths of the proposed model is that it can investigate the appropriateness of GPDIM over a single-index model. Various numerical studies confirm the proposed approach, and real data application are presented for illustration purposes.

Action Recognition with deep network features and dimension reduction

  • Li, Lijun;Dai, Shuling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.832-854
    • /
    • 2019
  • Action recognition has been studied in computer vision field for years. We present an effective approach to recognize actions using a dimension reduction method, which is applied as a crucial step to reduce the dimensionality of feature descriptors after extracting features. We propose to use sparse matrix and randomized kd-tree to modify it and then propose modified Local Fisher Discriminant Analysis (mLFDA) method which greatly reduces the required memory and accelerate the standard Local Fisher Discriminant Analysis. For feature encoding, we propose a useful encoding method called mix encoding which combines Fisher vector encoding and locality-constrained linear coding to get the final video representations. In order to add more meaningful features to the process of action recognition, the convolutional neural network is utilized and combined with mix encoding to produce the deep network feature. Experimental results show that our algorithm is a competitive method on KTH dataset, HMDB51 dataset and UCF101 dataset when combining all these methods.

A Comparative Study of Covariance Matrix Estimators in High-Dimensional Data (고차원 데이터에서 공분산행렬의 추정에 대한 비교연구)

  • Lee, DongHyuk;Lee, Jae Won
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.5
    • /
    • pp.747-758
    • /
    • 2013
  • The covariance matrix is important in multivariate statistical analysis and a sample covariance matrix is used as an estimator of the covariance matrix. High dimensional data has a larger dimension than the sample size; therefore, the sample covariance matrix may not be suitable since it is known to perform poorly and event not invertible. A number of covariance matrix estimators have been recently proposed with three different approaches of shrinkage, thresholding, and modified Cholesky decomposition. We compare the performance of these newly proposed estimators in various situations.

Reheating Process of Metal Matrix Composites Fabricated by Combined Stirring Process for Thixoforming (복합교반법으로 제조한 금속복합재료의 Thixoforming용 재가열공정)

  • 이동건;강충길
    • Transactions of Materials Processing
    • /
    • v.11 no.1
    • /
    • pp.45-53
    • /
    • 2002
  • The forming process of metal matrix composites by die casting and squeeze casting process are limited in size and dimension In term of final parts. The melt strirring method have the problems that the homogeneous distribution of the reinforcements is difficult due to the low weldability and the density difference between the molten metal and the reinforcement. The thixoforming process for metal matrix composites has numerous advantages compacted to die casting, squeeze casting and compocasting. However, for the thixofoming process, the billet with the desired volume fraction must be heated to obtain a uniform temperature distribution over the entire cross-sectional areas. To obtain the reheating conditions of composites, the particulate reinforced metal matrix composites for thixoforming were fabricated by combined stirring process which is simultaneously performed with electro-magnetic stirring and mechanical stirring process. The matrix alloy and reinforcement are used to aluminum alloy(A357) and SiCp with diameter 14, $25{\mu}m$, respectively. The microstructure characteristics were investigated by changing the volume fraction and reinforcement size. The heating conditions to obtain the uniform temperature distribution in cross section area of fabricated metal matrix composites billet are proposed with heating time, the heating temperature and the holding time.

Improved Face Recognition based on 2D-LDA using Weighted Covariance Scatter (가중치가 적용된 공분산을 이용한 2D-LDA 기반의 얼굴인식)

  • Lee, Seokjin;Oh, Chimin;Lee, Chilwoo
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.12
    • /
    • pp.1446-1452
    • /
    • 2014
  • Existing LDA uses the transform matrix that maximizes distance between classes. So we have to convert from an image to one-dimensional vector as training vector. However, in 2D-LDA, we can directly use two-dimensional image itself as training matrix, so that the classification performance can be enhanced about 20% comparing LDA, since the training matrix preserves the spatial information of two-dimensional image. However 2D-LDA uses same calculation schema for transformation matrix and therefore both LDA and 2D-LDA has the heteroscedastic problem which means that the class classification cannot obtain beneficial information of spatial distances of class clusters since LDA uses only data correlation-based covariance matrix of the training data without any reference to distances between classes. In this paper, we propose a new method to apply training matrix of 2D-LDA by using WPS-LDA idea that calculates the reciprocal of distance between classes and apply this weight to between class scatter matrix. The experimental result shows that the discriminating power of proposed 2D-LDA with weighted between class scatter has been improved up to 2% than original 2D-LDA. This method has good performance, especially when the distance between two classes is very close and the dimension of projection axis is low.

Research on Designing Korean Emotional Dictionary using Intelligent Natural Language Crawling System in SNS (SNS대상의 지능형 자연어 수집, 처리 시스템 구현을 통한 한국형 감성사전 구축에 관한 연구)

  • Lee, Jong-Hwa
    • The Journal of Information Systems
    • /
    • v.29 no.3
    • /
    • pp.237-251
    • /
    • 2020
  • Purpose The research was studied the hierarchical Hangul emotion index by organizing all the emotions which SNS users are thinking. As a preliminary study by the researcher, the English-based Plutchick (1980)'s emotional standard was reinterpreted in Korean, and a hashtag with implicit meaning on SNS was studied. To build a multidimensional emotion dictionary and classify three-dimensional emotions, an emotion seed was selected for the composition of seven emotion sets, and an emotion word dictionary was constructed by collecting SNS hashtags derived from each emotion seed. We also want to explore the priority of each Hangul emotion index. Design/methodology/approach In the process of transforming the matrix through the vector process of words constituting the sentence, weights were extracted using TF-IDF (Term Frequency Inverse Document Frequency), and the dimension reduction technique of the matrix in the emotion set was NMF (Nonnegative Matrix Factorization) algorithm. The emotional dimension was solved by using the characteristic value of the emotional word. The cosine distance algorithm was used to measure the distance between vectors by measuring the similarity of emotion words in the emotion set. Findings Customer needs analysis is a force to read changes in emotions, and Korean emotion word research is the customer's needs. In addition, the ranking of the emotion words within the emotion set will be a special criterion for reading the depth of the emotion. The sentiment index study of this research believes that by providing companies with effective information for emotional marketing, new business opportunities will be expanded and valued. In addition, if the emotion dictionary is eventually connected to the emotional DNA of the product, it will be possible to define the "emotional DNA", which is a set of emotions that the product should have.

On the numerical computation of the matrix exponential

  • Yu, Dong-Won
    • Journal of the Korean Mathematical Society
    • /
    • v.31 no.4
    • /
    • pp.633-643
    • /
    • 1994
  • Let us consider the initial-value problem of dimension m: $$ \frac{d\tau}{d}y(\tau) = f(\tau, Y(\tau)), y(0) = y_0, \tau \geq 0, (1.1) $$ Where $ = (f_1, f_2, \cdots, f_m) and y = (y_1, y_2, \cdots, y_m)$.

  • PDF

A COMPARISON OF MAXIMAL COLUMN RANKS OF MATRICES OVER RELATED SEMIRINGS

  • Song, Seok-Zun
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.213-225
    • /
    • 1997
  • Let A be a real $m \times n$ matrix. The column rank of A is the dimension of the column space of A and the maximal column rank of A is defined as the maximal number of linearly independent columns of A. It is wekk known that the column rank is the maximal column rank in this situation.

  • PDF

Texture Analysis and Classification Using Wavelet Extension and Gray Level Co-occurrence Matrix for Defect Detection in Small Dimension Images

  • Agani, Nazori;Al-Attas, Syed Abd Rahman;Salleh, Sheikh Hussain Sheikh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.2059-2064
    • /
    • 2004
  • Texture analysis is an important role for automatic visual insfection. This paper presents an application of wavelet extension and Gray level co-occurrence matrix (GLCM) for detection of defect encountered in textured images. Texture characteristic in low quality images is not to easy task to perform caused by noise, low frequency and small dimension. In order to solve this problem, we have developed a procedure called wavelet image extension. Wavelet extension procedure is used to determine the frequency bands carrying the most information about the texture by decomposing images into multiple frequency bands and to form an image approximation with higher resolution. Thus, wavelet extension procedure offers the ability to robust feature extraction in images. Then the features are extracted from the co-occurrence matrices computed from the sub-bands which performed by partitioning the texture image into sub-window. In the detection part, Mahalanobis distance classifier is used to decide whether the test image is defective or non defective.

  • PDF

Efficient Speaker Identification based on Robust VQ-PCA (강인한 VQ-PCA에 기반한 효율적인 화자 식별)

  • Lee Ki-Yong
    • Journal of Internet Computing and Services
    • /
    • v.5 no.3
    • /
    • pp.57-62
    • /
    • 2004
  • In this paper, an efficient speaker identification based on robust vector quantizationprincipal component analysis (VQ-PCA) is proposed to solve the problems from outliers and high dimensionality of training feature vectors in speaker identification, Firstly, the proposed method partitions the data space into several disjoint regions by roust VQ based on M-estimation. Secondly, the robust PCA is obtained from the covariance matrix in each region. Finally, our method obtains the Gaussian Mixture model (GMM) for speaker from the transformed feature vectors with reduced dimension by the robust PCA in each region, Compared to the conventional GMM with diagonal covariance matrix, under the same performance, the proposed method gives faster results with less storage and, moreover, shows robust performance to outliers.

  • PDF