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ON THE NUMERICAL COMPUTATION
OF THE MATRIX EXPONENTIAL

DonNnG WON Yu

1. Introduction

Let us consider the initial-value problem of dimension m:

d
?i?y(T) = f(7,y(7)), ¥(0) = yq, T >0, (L.1)

where f == (f1, f2, - . fm) and y = (y1,y¥2, -+ , ym ). We assume that
4 ..(r .
lim _d‘ry'(T) = lim ft(TaY(T)) -
rooo yi(T)  toee yi(T)
Then a = max{aj,az, - ,ap} is called the exponentially domi-
nant order (cf. [10]) of the system (1.1).

Using the function z(7) = e ®"y(r), the problem (1.1) with the
dominant order « is transformed to the initial-value problem for z(r)

(cf. [5]) :

i=1,2,--,m. (L2)

)

—QaT

EZ(T) = g(r, e Tz(7)), z(0) = yo, (1.3)

where g(7,y) = f(7,y) — ay.
Apply the Runge-Kutta methods defined by the Butcher array (1.4)
to the transformed problem (1.3).

1 dyy - d].«-

= ' ' (1.4)
Cg ds] e dss
b] ba
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And if we define that y, and z, are approximations of y(r,) and
2(7n) = e~ "™ y(1,) respectively, then the generalized Runge-Kutta
(GRK) method is derived as follows (cf. [10]):

Yot =Py 4+ h Z et —elothy (1.5)

i=1
where

ki :g(Ti + Ciha yn,i)’

Yni :’e{"ﬂhyn +h Z dt'jﬁ((:"‘ci )ahk]’

=1
Here h is the constant step size and 7,, = nh.

All methods for the initial-value problem (1.1) can be generalized
as above. For instance the explicit and the implicit Euler methods are
generalized as follows:

Yntt = €2 [yn + hg(Tn, ¥n)], (1.6)

and
Ynt1 = €y + hg(Tng1, Ynr1):

In Section 2, we derive a new algorithm (2.3) for the computation of
the matrix exponential. In Section 3, we prove that -he local trunca-
tion error bound of the generalized explicit Euler meshod (1.6) is less
than the local truncation error bound of the explicit Euler method. In
the last section, it is shown through numerical examples that, for the
problem (1.1) with a # 0, the algorithm (2.3) is more effective than
the original algorithm (2.2) and Ward’s algorithm (2.4) (¢f. [7]).

2. Algorithms for the matrix exponential

Let R™*™ denote the set of real m x m matrices and R™ be the
m dimensional column vector space. The exponential of a matrix 4 =
[@i;] € R™*™ is defined by

e™ = Z (Tk!) , where 7 > 0.
k=0



On the numerical computation of the mat-ix exponential 635

The importance of this matrix function in applied mathematics is de-
rived from the fact that the matrix exponential is the unique solution

X(r)=[x',x%,--- ,x™] = [z;;] € R™*™ to the initial-value problem:
d . .
—X(r)= AX(r), X(O) =1 720 (2.1)
-
where I = [i', i, --- , i”"] = [é;;] is the identity matrix.

In this paper we will assume that the matrix 4 has no complex eigen-
values. And suppose that A has a full set of m linearly independent
eigenvectors. Letting p',p?.--- ,p™(€ R™>1) denote these eigenvec-
tors and Ay, Ag, <+, Am(6 = Ay < Ay < -+ < Ay = a) the correspond-
ing eigenvalues, form the matrix P such that P = [p' p* --- p™]. Then
the solution of (2.1) is given by

X(T) = C"]Rf\l‘f + CZ€A2T +-- 4 Cm('\m"‘,

where C; = p*(q*)T € R™*™ and q' is the ith 1ow vector of P~'. Thus
X (1) tends to C,,,e®” as 7 tends to co. Hence we have the following
proposition.

PROPOSITION 2.1. The exponentially dom:nant order of the prob-
lem (2.1) is the largest eigenvalue a of the matrix A.

Application of the Runge-Kutta method (1.4) to the equation (2.1)
yields the stability function

Det [I — (D —ub”) ® hA)
Det [I — D ® hA4]

In this case, © denotes Kronecker product, Det represents the cell
determinant (cf. [9]), b = [by,bg,- -+ ,b,]7 € R* and D = [d;;] € R***
are the Butcher arraies (1.4), and u = [1,1,- - ,1]7 € R*. Then the
matrix exponential e™” = X(7,) can be approximately computed by

this rational function as follows:

(A = X(ry) & Xy = R(MA) Xy = (R(RA)). (22)
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REMARK 2.1. In order to improve the accuracy for matrices with
large norm, Lawson [5] proposed a new idea using diagonal Padé ap-
proximation and the identity

(?A . (62—"/1)2”'

It is said to be the scaling and squaring algorithm.

While applying the GRK method (1.5) to the problem (2.1) with the
exponentially dominant order o, its stability function K(hA) is derived
as follows (cf. [9]):

K(hA) = ¢**R(hB), B=A-a"

So we arrive at an algorithm for the numerical comnputation of the
matrix exponential:

e™ = X(r) & X, = K(hB) X,y = (K(hA))" = £ (R(WB))™.
(2.3)

REMARK 2.2. Using the trace tr(4) of the matrix 4, Ward [7] splits
the matrix 4 as follows:

A= B+ 31, where 3 =tr(A)/mn,
and utilizes the splitting, scaling, and squaring algorithm:

e A x P (R(RB))". (2.4)

REMARK 2.3. The (p, ¢)-Padé approximations (cf. [6]).
e~ qu(A) = [qu(A)]al[‘Npq(A)]-,

can be transformed to the generalized (p, q)-Padé approximation as

follows:
e A ~ (»ryr,, (qu(hB))n,

where B = 4 — ol.
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3. Comparison of error bounds

In order to make a comparative study of tae algorithms (2.2) and
(2.3), we apply the explicit Euler method and the generalized explicit
Euler method (1.6) to the problem (2.1) with the exponential order
a{a # 0). Because of convenience of unitary invariance, we work ex-
clusively with the 2-norm in the vector spaces R™ and R™*™  and
denote the constants 1,7, kn, kn, k and k as folows:

~ 4], 2= 1B
kn = *Y”(Tn + C)la kn = lazX(Tn &)~ 2(1)(,('”1 +£)
(0< ¢ <h) + X", + )

(O < f < «'l)
k =max{k, ko, - . kn}, k= max{ki, ko, -+ kn}
From the equation (2.1), we have a?X (7, +&)- 20X (70 + &)+ X" (70 +
€)= (al - A)?X(ra+€) = B2X(r+&) and X"(1,+() = A*X (7, +0).

Hence we have
ky == |A%X (1, + )], kn = |B*X (1, + &), 0<é<h (3.1)
Since the global truncation error of the generalized explicit Euler
method (1.6) is given by
eclh=8p h?

|y(TH+I) - Yn-H! < 6(”1(1 + h’))lY(Tn) - f"n} + T,

r4

the local truncation error bounds ¢,, and ¢, of t1e explicit Euler method
and the generalized explicit Euler method (1.6) are given by

_ koh?

)

} "a(h—f)kllg
’ P, =< )___’ (3.2)

4

ln

The global truncation error bound G, and the total error bound 7,
of the explicit Euler method are transformed as follows:

(™™ — 1)k} . 1/kh
6= =g Ge=em o (T )b
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and the global truncation error bound G, and the total error bound
Jn of the generalized explicit Euler method (1.6) may be classified as
follows:

a Gn Tn
T T 1 TkR - "
a>0 L__ET_}_ (ot {70 + :_,(ﬂ L %)}
0>a> ] Inf_(.‘j.;)r;“ elatMmn {,),0 + 7, %ﬁ + %)}

where

1 v 1s the initial round-off error bound commniitted evaluating
X(0),

2 4 is the maximum possible round-off error bound of the com-
puter.

PROPOSITION 3.1. Let the matrix A be normal and have no com-
plex eigenvalues, and let B = A—al. 0 < ao/2 <6 < X\ < a or
6 < A <a<0, then

’ (1) |Bx| < |‘AX'7
(i) 7 < 7.
Proof. (i) Let u!,u?, u™ be a set of orthonormal eigenvectors
of A with dsqocmted (1genvaluf‘s b= < X< <A =a If

X =Y ziu;, then Ax = Y z;\,u;, and

|Bx|*
=((A - al)x, (A - al)x) = (Ax, AX) — 2a(AX,X) 4 &' (x X)

=2 e ta{a Y w2 -2) el = axP 4o Yo 20,

fO0<a/2<6< A\, <aoréd<i <ac<0, then o Y r#(a - 2),) < 0.

So we have

|Bx| < |Ax|.

(i1) 7 = | B]| = supyso [l < supxgo B3l =14 =n. O
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PROPOSITION 3.2. Let the matrix A be normal and have no com-
plex eigenvalues. Then, for anv € > 0, we have
(1) k, < ek,
(i) o < el,
when n is sufficiently large

Proof. Let P = [u' u?

1 ™ € R™*™, then D
A = PDPT. Since X(r)

= PTAP and
Pe™PPT we have
B*X(7) =(4* — 204 + o)™ = P {(D? - 20D + o®)e™ P} PT
(A1 — a)Ze™ 1)
=P pT
0

(/\m . 'y)2pr,\m

Then, because P is an orthogonal matrix

IBPX(r)fF = (hi—a)t?m™

=1
Similary,

A2 X (r))? = Z e
(i) From (3.1) we have

0 <~

:?5 I :To‘

|B2‘Y(Tn +§)12 _ E]n;
CAZX(r, + Q)2 T

1(/\1_ _ a)4e2(rn+f)A,~
S, WA o
N7 4 271, A
- 4,27, A
Zi:] '\ie i

where p; = p;( ), €, (). But

N~

lim _i—p (A = a)t T

n AJ 4 2 (A —
= lim Z' 1A —a)e ™
n—00 Z:ﬁ] /\?627'n/\«'

— 4,27, (A —a)
n—eo 3T Ale

a)

=0.



640 Dong Won Yu

So, we have lim,_ o —:—ﬂ = 0.

(i1) Similary, from (3.2), we have

2 eza(h"'e’kflh"

0<5 = 274
2 kZh
<€2a(h——£) er;l(/\i — a )Tt ON
- S AL ON
1= T

, Sialh -t
>pP2 m 4.2 n/\i
Zi:] Aié "

where p; = pa(A(A), h, £, ¢). Thus we have lim, . J"f = (). O

REMARK 3.1. Fair and Luke [3] have shown that the error in ap-
proximating the matrix exponential by the (q, q)-Padé approximation
increases as the norm of the matrix increases. Ward [7] attempts
to minimize the matrix norm by the translation, e? = ¢?¢®, where
B =tr(A)/m and B = A — 3. In general, ||[A — 3I| is smaller than
l[A — aI||. But |¢"4] does not tend to e¢™® but €™ as r increases.
Hence, in this case, we can not verify that £, < £,. It the last section
we exemplify that the relative total error bounds of the original and
Ward’s algorithms increase as 7 increases.

REMARK 3.2. It i1s also shown through numerical examples that
Proposition 3.2 holds for the arbitrary matrix 4 which is not normal.

4. Numerical tests

In Section 2, the algorithms (2.2) for the computation of the matrix
exponential 74 is transformed to the algorithm (2.3) by the exponen-
tially dominant order «. Using the mean of eigenvaiues of 4, Ward
[7] organizes the algorithm (2.4). The various Runge-Kutta methods
with their transformed algorithins (2.3) and (2.4) are investigated in
this section through the following example matrices. We implement
our algorithms on a personal computer in double precision.

Example 1.([4]) Example 2.
144 4 -2 4
A= 0 —1-6] A"[o —-:22—(5]’

where 6 = 1076
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Example 3. ([4],[7],(8]) Example 4.

4 2 0 -3 1 0
A=11 4 1/, A=lo0 -3 1 |,

11 4 4 -8 2

Example 5. ([7],(8]) Example 6.

—-131 19 18 0 1 0

A=1]-390 56 54|, A=10 0 1

-387 57 52 11 -1

Example 7. Example 8.

_9 9 9 0 1 0 0

0 010

A=|12 -5 1|, A= )
s 1 00 0 1
- - 1000

The example matrices are specified as the following table:

Ex XA AN (A B e (Ay7m] O 5(A) Note
1{—1+ 6, ~1 —6]4.2361]-1 + 6 4 -1 4 1 nearly defective
2 ~2,—2 — §[4.8284 -2 4[-2 - §/2 4 [-5x10"7 nearly confluent
3 3,3,6{6.0779 6(3.6886 4[2.3073 6.0566 defective
4 -1,-1,-2]9.8398 -119.7846f -1.3333|9.8246 41471 delective
5 -1,-2,-20(575.95 -1{575.91| -7.6667|575.77 277.21 |widely spread eigenvalues
6 1,-1,-1]1.9319 112.7651 -1/3[1.8095 1.0663 | defective, different sign
7 0,-6,-6 6 0 6 -4 4 0 | nondefective, symmetric
8 1,-1,1,-i 1 1 2 ] 1 1 complex eigenvalues

where B = A —al, C = A — (ir(4)/m)1, and pu(A) = max{)\; :
A € A[(A+ ATY/2)).
The relative total error of the approximation X, = V = [v,,] to
X(rp)=e™A =W = [uy j], computed by our algorithm (2.3),
=1 j=1
is compared with those obtained by the original algorithm (2.2) and
Ward’s algorithm (2.4) as follows:

Wyy — Vyy
Wiy
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Comparison of the Behaviours of Relative Total Irrors
of the Algorithms (2.2), (2.3) and (2.4) for the Matrix £xponential

Expiict £uer Method
(0,4~ Pudé Approximation

Excmple 1.

Modified Euler Method
(0.2)—-Pad& Approximation

.
.
\.\
T L B S - S e e |
340
Excmple 3.

Classinal Runge~Kutto Method
(0,4)-Padé Approximation

imphizit Fuer Method
1,0)~Podé Asproximation
) D
- e e <

{

2.2
& 3? £

ey

Excmple 2

2~-Stoge Goust-lLegendre Method
ex)

-

—Padé approximuation

o -
10T T T T T
Q0o .00
Example 4

(4,4)—Padé Asproximation

Exqgmple 5.

Z-—-5tage Lobolo KO Method
(2.0)-Padé approximation

.\
.
~ 2.3)
\
“
Y
B T TR
0.00 5.00
Exampre 7

Exanple 6

2--Stage Racaw lIA kethod
(2.1)~Padé -pproxmation

- L A S Sl S S o |
2.00 2006
Exq nple 8.
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