• Title/Summary/Keyword: dihedral group

Search Result 46, Processing Time 0.026 seconds

Crystal Structure of Bithionol, $C_{12}H_6Cl_4O_2S$

  • Hyung Song;Euisung Kim;Hyun-So Shin
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.1
    • /
    • pp.19-21
    • /
    • 1990
  • The crystal structure of Bithionol, $C_{12}H_6Cl_4O_2S$, has been determined from X-ray intensity data measured by Enraf-Nonius CAD-4 diffractometer using graphite-monochromatized $Mo-K\alpha$ radiation. The crystal data as follows; triclinic space group P{\bar{1}}$, a = 8.879(2), b = 10.782(1), c = 8.511(1)${\AA}$, ${\alpha}$ = 115.43(1), ${\beta}$ = 115.22(1), ${\gamma}\;=\;74.44^{\circ}(1)$. ${\mu}\;=\;9.51\;cm^{-1}$, F(000) = 356, Z = 2. Final R value is 0.036 for independent 2669 observed reflections. Each six-membered benzene rings are coplanar within experimesntal errors and the dihedral angle between these planes is $81.28^{\circ}$ (1). The S-(1) and S-C(7) distances are 1.787(2) and 1.791(3)${\AA}$, respectively.

COMBINATORIAL SUPERSYMMETRY: SUPERGROUPS, SUPERQUASIGROUPS, AND THEIR MULTIPLICATION GROUPS

  • Bokhee Im;Jonathan D. H. Smith
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.1
    • /
    • pp.109-132
    • /
    • 2024
  • The Clifford algebra of a direct sum of real quadratic spaces appears as the superalgebra tensor product of the Clifford algebras of the summands. The purpose of the current paper is to present a purely settheoretical version of the superalgebra tensor product which will be applicable equally to groups or to their non-associative analogues - quasigroups and loops. Our work is part of a project to make supersymmetry an effective tool for the study of combinatorial structures. Starting from group and quasigroup structures on four-element supersets, our superproduct unifies the construction of the eight-element quaternion and dihedral groups, further leading to a loop structure which hybridizes the two groups. All three of these loops share the same character table.

Conformations, Chemical Reactivities and Spectroscopic Characteristics of Some Di-substituted Ketenes: An ab initio Study

  • Gupta, V.P.;Sharma, Archna;Agrawal, S.G.
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.9
    • /
    • pp.1297-1304
    • /
    • 2006
  • A systematic study of the structure, energetics and spectral characteristics of substituted aminoketenes $R(NH_2)$C=C=O (R = H, $CH_3$, $NH_2$, OH, $OCH_3$, CH=$CH_2$, C$\equiv$CH, CN, CHO, NO, $NO_2$) which are highly reactive and transient intermediates in synthesis has been conducted by ab initio calculations at the MP2/6- 31G*//MP2/6-31G* level. Twenty four stable isomers of the eleven substituted aminoketenes having dihedral angles $\phi NH_2\sim120{^{\circ}}$ and $60^{\circ}$ have been identified and their optimized geometries and energies obtained. Electrostatic and steric effects on the molecular geometries have been analyzed. While the $\pi$-acceptor groups lead to planar conformations, the electron-donor groups give rise to non-planar conformations. Isodesmic substituent stabilization energies relative to alkenes have been calculated and correlation with group electronegativities established. Role of induction effect by the substituent groups and resonance effects in charge distribution in the molecules has been analyzed. An analysis of the asymmetric stretching frequencies and intensities of the C=C=O group shows that affect of non-$\pi$ acceptor substituents on the frequency is determined by the field effect (F) and resonance effect (R) parameters, the calculated intensities I (km/mol.) are correlated to group electronegativities $x$ of the substituents by the relationship I = 640.2–100.1 $x$ (r = 0.92). The $\pi$-acceptor substituents increase the intensity which may be explained in terms of their delocalizing effect on the negative charge at the $C_{\beta}$ atom.

Structure of an Organotitanoxane Containing a Tetrahedral $Ti_{4}O_{6}$ Cage, $C_{40}H_{60}O_{6}Ti_{4}$

  • Kim, Young-Sang;Ko, Jae-Jung;Kang, Sang-Ook;Kim, Tae-Jin;Han, Won-Sik;Suh, Il-Hwan
    • Korean Journal of Crystallography
    • /
    • v.16 no.2
    • /
    • pp.102-106
    • /
    • 2005
  • The crystal structure of the title compound has been analyzed by single crystal X-ray diffraction method. The compound crystallized in the triclinic space group $P\bar{1}$ with a=11.300(6) ${\AA}$, c=18.716(10) ${\AA}$, ${\alpha}=82.833(10)^{\circ}$, ${\beta}=83.042(11)^{\circ}$, ${\gamma}=66.139(10)^{\circ}$, $V=2162(2)\;{\AA}^{3}$, Z=2 and R1=0.661 for 10578 unique reflections. The four $C_{5}Me_{5}$ planar groups from a tetrahedron with a mean dihedral angle $70.92(9)^{\circ}$ among them and the $Ti_{4}O_{6}$ cage sits at the center of the tetrahedron. Each Ti atom in the $Ti_{4}O_{6}$ cage is bonded by three bridging oxygen atoms and coordinated by a $C_{5}Me_{5}$ ligand with a mean distance $2.067{\AA}$ from Ti atoms to the centroids of the four five-membered rings. Two oxygen atoms facing each other in $Ti_{4}O_{6}$ cage are $4.051(3){\AA}$ away in average.

The crystal and molecular structure of chlorpropamide

  • Koo, Chung-Hoe;Cho, Sung-Il;Yeon, Young-Hee
    • Archives of Pharmacal Research
    • /
    • v.3 no.1
    • /
    • pp.37-49
    • /
    • 1980
  • Chlorpropamide, $C_{10}H_{13}N_{2}O_{3}SCI$, forms orthofombic crystals of space group $P_{2}_{ 1}2_{1}2_{1}$ with a 9.066 $\pm$ 0.004, b = 5.218 $\pm$ 0.003, c = 26, 604 $\pm$, 0.008 $\AA$, and four molecules per cell. Three dimensional photographic data were collected with Mo-K$\alpha$ radiation. The structure was determined using Patterson, Fourier and Difference syntheses methods and refined by the block-diagonal least-squares methods with anisotropic thermal parameters for all nonhydrogen atoms and isotropic thermal parameters for all hydrogen atomes. The final R value was 0.10 for the 1823 observed independent reflections. The dihedral angle between the planes through the benzene ring and the urea goup is 99$^{\circ}$. The conformational angle formed by the projection of the S-C(1) with that of N(1)-C(7) when the projection is taken along the S-N(1) bond is 76$^{\circ}$. The molecule appears to form with neighbouring molecules two hydrogen bonds, N(1)..H...O(3) and N(2)-H...0(2) of lengths 2.774 and 2.954$\AA$ respectively related by screw diads parallel to the a axis. Adjacent molecules parallel to b and c axis are bound together by van der Wasls forces.

  • PDF

The Crystal Structure of Bis(N-Methylphenazinium) Bis(Oxalato)Palladate(Ⅱ) (Bis(N-Methylphenazinium) Bis(Oxalato)Palladate(Ⅱ)의 결정구조)

  • Kim, Se Hwan;NamGung, Hae;Lee, Hyeon Mi
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.11
    • /
    • pp.827-832
    • /
    • 1994
  • The crystal structure of bis(N-methylphenazinium) bis(oxalato)palladate(II) has been determined by X-ray crystallography. Crystal data: ((C_{13}H_{11}N_2)_2[Pd(C_2O_4)_2]) $M_w$ = 672.93, Triclinic, Space Group P1 (No = 2), a = 7.616(8), b = 9.842(3), c = $20.335(7)\AA$, $\alpha$ = 103.53(3), $\beta$ = 90.00(5), $\gamma$ = $112.38(5)^{\circ}$, Z = 2, $V = 1363(2){\AA}^3\;D_c = 1.639\;gcm^{-3},\;{\mu} = 7.3\;cm^{-1},\;F(000) = 680.0$. The intensity data were collected with $Mo-K\alpha$ radiation (${\lambda}$= 0.7107\;\AA)$ on an automatic four-circle diffractometer with a graphite monochromater. The structure was solved by Patterson method and refined by full matrix least-square methods using Killean & Lawrence weights. The final R and S values were $R = 0.069,\;R_w = 0.050,\;R_{all} = 0.069$ and S = 5.45 for 3120 observed reflections. Both cation and anion complexes are essentially planar and have dihedral angles of 6.3(6) and $57.06(6)^{\circ}$ between their planes. The planar complex anions are sandwiched between slightly bent cations. The interplanar separations of two triads are 3.328 and 3.463 $\AA$, respectively. The triads are stacked along b-axis, but their orientations are different based on dihedral angle $59.08(9)^{\circ}$ of two complex anions.

  • PDF

Toluene-4-sulfonic Acid 4-Allyl-2,6-dimethoxy-phenyl Ester

  • Choi, Kyu-Yong;Han, Byung-Hee;Kang, Sung-Kwon;Sung, Chang-Keun;Kang, Sang-Ook;Suh, Il-Hwan
    • Korean Journal of Crystallography
    • /
    • v.15 no.1
    • /
    • pp.1-4
    • /
    • 2004
  • The title compound, $C_{18}H_{20}O_5S$, crystallized in the centrosymmetric space group $P\={1}$ with one molecule in an asymmetric unit. The S atom in the sulfonate group retains the overall tetrahedral environment of the O and C atoms with an average S-O bond of 1.420(2) ${\AA}$ for double bond and of 1.598(2) ${\AA}$ for single bond and S-C length of 1.742(3) ${\AA}$. The torsion angle C(7)-S-O(3)-C(8) is 100.3(2)$^{\circ}$ and the dihedral angle of the two planar six-membered rings is 42.73(20)$^{\circ}$.

Non-volatile Molecular Memory using Nano-interfaced Organic Molecules in the Organic Field Effect Transistor

  • Lee, Hyo-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.31-32
    • /
    • 2010
  • In our previous reports [1-3], electron transport for the switching and memory devices using alkyl thiol-tethered Ru-terpyridine complex compounds with metal-insulator-metal crossbar structure has been presented. On the other hand, among organic memory devices, a memory based on the OFET is attractive because of its nondestructive readout and single transistor applications. Several attempts at nonvolatile organic memories involve electrets, which are chargeable dielectrics. However, these devices still do not sufficiently satisfy the criteria demanded in order to compete with other types of memory devices, and the electrets are generally limited to polymer materials. Until now, there is no report on nonvolatile organic electrets using nano-interfaced organic monomer layer as a dielectric material even though the use of organic monomer materials become important for the development of molecularly interfaced memory and logic elements. Furthermore, to increase a retention time for the nonvolatile organic memory device as well as to understand an intrinsic memory property, a molecular design of the organic materials is also getting important issue. In this presentation, we report on the OFET memory device built on a silicon wafer and based on films of pentacene and a SiO2 gate insulator that are separated by organic molecules which act as a gate dielectric. We proposed push-pull organic molecules (PPOM) containing triarylamine asan electron donating group (EDG), thiophene as a spacer, and malononitrile as an electron withdrawing group (EWG). The PPOM were designed to control charge transport by differences of the dihedral angles induced by a steric hindrance effect of side chainswithin the molecules. Therefore, we expect that these PPOM with potential energy barrier can save the charges which are transported to the nano-interface between the semiconductor and organic molecules used as the dielectrics. Finally, we also expect that the charges can be contributed to the memory capacity of the memory OFET device.[4]

  • PDF

Synthesis and Structure of N-Methylphenazinium-Tetracynnopalladate(II) Hydrate (N-Methylphenazinium-Tetracyanopalladate(II) Hydrate의 합성 및 결정구조 연구)

  • NamGung, Hae;Lee, Hyun-Mi
    • Korean Journal of Crystallography
    • /
    • v.17 no.1
    • /
    • pp.6-9
    • /
    • 2006
  • Crystal structure of Bis(N-Methylphenazinium)-Tetracyanopalladate(II) hydrate has been determined by X-ray crystallography. Crystal data: $(C_{13}H_{11}N_2){_2}[Pd(cn)_4]{\cdot}H_2O$, Monocline, Space group $P2_1/b$(No=14), a=9.783(4), b=10.788(4), c=13.666(4) ${\AA},\;{\beta}=104.59(5),\;Z=2,\;V=1392.9{\AA}{^3},\;Dc=1.476gcm^{-3},\;F(000)=632,\;{\mu}=7.05cm^{-1}$. The structure was solved by Patterson method and refined by full matrix least-square methods using unit weights. The final R and S values were R=0.0257, Rw=0.0732, Rall=0.0283 and S=1.07 for 1930 observed reflections. Both cation and anion complexes are essentially planar and have dihedral angles of $10.16(4)^{\circ}$. The planar complex anions are sandwiched between slightly bent cations. The interplanar separations in one triad and between two triads are 3.419(3) and $3.402(4){\AA}$, respectively. The triads are stacked along b-axis.

COMPUTER SIMULATION OF INTRAMOLECULAR HYDROGEN TRANSFER TO CARBONYL OXYGEN BY A MONTE CARLO METHOD: PHOTOREACTIONS VIA REMOTE PROTON TRANSFER IN BENZOYLBENZOATES

  • Hasegawa, Tadashi;Yamazaki, Yuko;Yoshioka, Michikazu
    • Journal of Photoscience
    • /
    • v.4 no.2
    • /
    • pp.61-67
    • /
    • 1997
  • The model based on the idea that the p$_y$-orbital of the carbonyl oxygen is responsible to receiving hydrogen was devised for simulation of intramolecular hydrogen transfer. A Monte Carlo method was applied to free rotation of a molecular chain performed by changing the dihedral angles, and a "hit" was defined as the case when the migrating hydrogen comes within the region defined as the p$_y$-orbital and satisfies all the geometrical requirements for abstraction. A set of parameters was employed for defining the region and the requirements; $\tau$ was defined as the angle formed between O...H vector and its projection on the mean plane of the carbonyl group (- 43$\circ$ < $\tau$ < + 43$\circ$), $\Delta$ as the C=O...H angle (90 -15$\circ$ < $\Delta$ < 90 + 15$\circ$), $\theta$ as the O...H - C angle ( 180 - 80$\circ$< 0 < 180 + 80$\circ$), d as the distance from the center of the lobe of the p$_y$-orbital to hydrogen (0 < d < 1.04 ${\AA}$). The minimum value for the distance between carbonyl oxygen (O$_1$) and the migrating hydrogen (H$_i$) and for that between non-bonded atoms except the pair of O$_1$ and H$_i$ were assumed to be 0.52 ${\AA}$ and 1.54 ${\AA}$, respectively. The apphcation of this model to intramolecular $\beta$-, $\gamma$-, $\delta$-, $\epsilon$-, and $\zeta$-hydrogen abstraction in ketones and $\eta$- and $\theta$- proton transfer in oxoesters gave good results reflecting their photochemical behavior. The model was also used for prediction of photoreactivities of 2-(N,N-dibenzylamino)ethyl 2-, 3- and 4-benzoylbenzoate (1a - c). (1a - c).

  • PDF