• Title/Summary/Keyword: digital forest site map

Search Result 26, Processing Time 0.021 seconds

Site Index Equations and Estimation of Productive Areas for Major Pine Species by Climatic Zones Using Environmental Factors (기후대별 입지환경 인자에 의한 소나무류의 지위지수 추정식 및 적지 구명)

  • Shin, Man-Yong;Won, Hyung-Kyu;Lee, Seung-Woo;Lee, Yoon-Young
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.3
    • /
    • pp.179-187
    • /
    • 2007
  • This study was conducted to develop site index equations for some pine species by climatic zones based on the relationships between site index and environmental factors. The selected pine species were Pinus densiflora Sieb. et. Zucc., Pinus densiflora for, erecta, and Pinus thunbergii. A total of 28 environmental factors were obtained from a digital forest site map. The influence of 28 environmental factors on site index was evaluated by multiple regression analysis. Four to eight environmental factors were selected in the final site index equation for pine species by climatic zones. The site index equations developed in this study was then verified by three evaluation statistics such as model's estimation bias, model's precision and mean square error type of measure. We concluded that the site index equations for the pine species by climatic Bones were capable of estimating forest site productivity. Based on these site index equations, the amount of productive areas for the species by climatic zones was estimated by applying the GIS technique to digital forest maps.

The 1:5,000 Forest Soil Map: Current Status and Future Directions (1:5,000 산림입지토양도의 제작과 활용 및 향후 발전 방향)

  • Kwon, Minyoung;Kim, Gaeun;Jeong, Jinhyun;Choi, Changeun;Park, Gwansoo;Kim, Choonsig;Son, Yowhan
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.4
    • /
    • pp.479-495
    • /
    • 2021
  • To improve on the efficient management of forest resources, it is necessary to create a forest soil map, which represents a comprehensive database of forest lands. Although a 1:25,000 scale forest site map has been used in Korea, the need for a large-scale forest soil map with high precision and information on forest lands that is specialized for individual purposes has been identified. Moreover, to keep pace with the advancement in forest management and transition to a digital society, it is essential to develop a method for constructing new forest soil maps that can diversify its use. Therefore, this paper presented a developmental process and used a 1:5,000 scale forest soil map to propose future directions. National maps showing the soil type, depth, and texture were produced based on the survey and analysis of forest soils, followed by the Forest Land Soil Map (1:5,000) Production Standard Manual. Alternatively, forest soil map data were the basis on which various other maps that can be used to prevent and predict forest disasters and evaluate environmental capacities were developed. Accordingly, ways to provide appropriate information to achieve the national forest plan, secure forestry big data, and accomplish sustainable forest management that corresponds to the national development plan are proposed based on results from the current study.

Classification of Forest Fire Occurrence Risk Regions Using Forest Site Digital Map (수치산림입지도를 이용한 산불발생위험지역 구분)

  • An Sang-Hyun;Won Myoung-Soo;Kang Young-Ho;Lee Myung-Bo
    • Fire Science and Engineering
    • /
    • v.19 no.3 s.59
    • /
    • pp.64-69
    • /
    • 2005
  • In order to decrease the area damaged by forest fires and to prevent the occurrence of forest fires, we are making an effort to improve prevention measures for forest fires. The objective of this study is developing the forest fire occurrence probability model by means of forest site characteristics such as soil type, topography, soil texture, slope, and drainage and forest fire sites. Conditional probability analysis and GIS were used in developing the forest fire occurrence probability model that was used in the classification of forest fire occurrence risk regions.

A Study on Optimal Site Selection for Automatic Mountain Meteorology Observation System (AMOS): the Case of Honam and Jeju Areas (최적의 산악기상관측망 적정위치 선정 연구 - 호남·제주 권역을 대상으로)

  • Yoon, Sukhee;Won, Myoungsoo;Jang, Keunchang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.208-220
    • /
    • 2016
  • Automatic Mountain Meteorology Observation System (AMOS) is an important ingredient for several climatological and forest disaster prediction studies. In this study, we select the optimal sites for AMOS in the mountain areas of Honam and Jeju in order to prevent forest disasters such as forest fires and landslides. So, this study used spatial dataset such as national forest map, forest roads, hiking trails and 30m DEM(Digital Elevation Model) as well as forest risk map(forest fire and landslide), national AWS information to extract optimal site selection of AMOS. Technical methods for optimal site selection of the AMOS was the firstly used multifractal model, IDW interpolation, spatial redundancy for 2.5km AWS buffering analysis, and 200m buffering analysis by using ArcGIS. Secondly, optimal sites selected by spatial analysis were estimated site accessibility, observatory environment of solar power and wireless communication through field survey. The threshold score for the final selection of the sites have to be higher than 70 points in the field assessment. In the result, a total of 159 polygons in national forest map were extracted by the spatial analysis and a total of 64 secondary candidate sites were selected for the ridge and the top of the area using Google Earth. Finally, a total of 26 optimal sites were selected by quantitative assessment based on field survey. Our selection criteria will serve for the establishment of the AMOS network for the best observations of weather conditions in the national forests. The effective observation network may enhance the mountain weather observations, which leads to accurate prediction of forest disasters.

Effects of Stand Growth on Viewshed Analysis Using GIS (임분의 생장효과가 GIS 응용 가시권 분석에 미치는 영향 분석)

  • Jang, Kwang-Min;Song, Jung-Eun;Seol, A-Ra;Han, Hee;Chung, Joo-Sang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.2
    • /
    • pp.11-20
    • /
    • 2010
  • In this study, the effects of stand height growth on GIS-based viewshed analysis were investigated. DSM was created by combining stand height layers on DEM using map algebra functions. In developing the tree height layers, the digital forest-type maps, forest site maps and stand yield tables of Korea Forest Research Institute were used. The time horizon for viewshed analysis were 40 years. Two viewpoints in crossings of downtown for viewshed analyses were chosen using a projective mapping technique. The effects of tree height growth over time on visibility were measured in terms of the depth of blind areas and the area of visible regions. The results of viewshed analyses show that 17% of visible regions is reduced when we use DSM instead of DEM. As the tree height grows, the visibility gets worse and worse and the depth of blind area increases.

Parameterization and Application of a Forest Landscape Model by Using National Forest Inventory and Long Term Ecological Research Data (국가산림자원조사와 장기생태연구 자료를 활용한 산림경관모형의 모수화 및 적용성 평가)

  • Cho, Wonhee;Lim, Wontaek;Kim, Eun-Sook;Lim, Jong-Hwan;Ko, Dongwook W.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.3
    • /
    • pp.215-231
    • /
    • 2020
  • Forest landscape models (FLMs) can be used to investigate the complex interactions of various ecological processes and patterns, which makes them useful tools to evaluate how environmental and anthropogenic variables can influence forest ecosystems. However, due to the large spatio-temporal scales in FLMs studies, parameterization and validation can be extremely challenging when applying to new study areas. To address this issue, we focused on the parameterization and application of a spatially explicit forest landscape model, LANDIS-II, to Mt. Gyebang, South Korea, with the use of the National Forest Inventory (NFI) and long-term ecological research (LTER) site data. In this study, we present the followings for the biomass succession extension of LANDIS-II: 1) species-specific and spatial parameters estimation for the biomass succession extension of LANDIS-II, 2) calibration, and 3) application and validation for Mt. Gyebang. For the biomass succession extension, we selected 14 tree species, and parameterized ecoregion map, initial community map, species growth characteristics. We produced ecoregion map using elevation, aspect, and topographic wetness index based on digital elevation model. Initial community map was produced based on NFI and sub-alpine survey data. Tree species growth parameters, such as aboveground net primary production and maximum aboveground biomass, were estimated from PnET-II model based on species physiological factors and environmental variables. Literature data were used to estimate species physiological factors, such as FolN, SLWmax, HalfSat, growing temperature, and shade tolerance. For calibration and validation purposes, we compared species-specific aboveground biomass of model outputs and NFI and sub-alpine survey data and calculated coefficient of determination (R2) and root mean square error (RMSE). The final model performed very well, with 0. 98 R2 and 8. 9 RMSE. This study can serve as a foundation for the use of FLMs to other applications such as comparing alternative forest management scenarios and natural disturbance effects.

Past, Present and Future of Geospatial Scheme based on Topo-Climatic Model and Digital Climate Map (소기후모형과 전자기후도를 기반으로 한 지리공간 도식의 과거, 현재 그리고 미래)

  • Kim, Dae-Jun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.268-279
    • /
    • 2021
  • The geospatial schemes based on topo-climatology have been developed to produce digital climate maps at a site-specific scale. Their development processes are reviewed here to derive the needs for new schemes in the future. Agricultural and forestry villages in Korea are characterized by complexity and diversity in topography, which results in considerably large spatial variations in weather and climate over a small area. Hence, the data collected at a mesoscale through the Automated Synoptic Observing System (ASOS) operated by the Korea Meteorological Administration (KMA) are of limited use. The geospatial schemes have been developed to estimate climate conditions at a local scale, e.g., 30 m, lowering the barriers to deal with the processes associated with production in agricultural and forestry industries. Rapid enhancement of computing technologies allows for near real-time production of climate information at a high-resolution even in small catchment areas and the application to future climate change scenarios. Recent establishment of the early warning service for agricultural weather disasters can provide growth progress and disaster forecasts for cultivated crops on a farm basis. The early warning system is being expanded worldwide, requiring further advancement in geospatial schemes and digital climate mapping.

The Observed Change in Interannual Variations of January Minimum Temperature between 1951-1980 and 1971-2000 in South Korea (지난 반세기 동안 남한에서 관측된 1월 최저기온의 연차변이)

  • Jung J. E.;Chung U.;Yun J. I.;Choi D. K.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.4
    • /
    • pp.235-241
    • /
    • 2004
  • There is a growing concern about the possible increase in inter-annual variation of minimum temperature during the winter season in Korea. This view is strengthened by frequently reported freezing injury to dormant fruit trees, while warmer winters have prevailed recently. The January minimum temperature record at fourteen weather stations was analyzed for 1951-2000. The results showed no evidence of increasing standard deviation at 3 locations between 1951-1980 and 1971-2000, while the remaining 11 stations showed a trend of decreasing standard deviation for the two periods. An empirical model explaining the spatial variation of the standard deviation was derived by regression analysis of 56 stations' data for 1971-2000. Daily minimum temperature and the site elevation may account for 68% of the observed variations. We applied this model to restore the average standard deviation of the January minimum temperature for 1971-2000, and the result was used to produce gridded minimum temperature data for the recurrence interval of 10 and 30 years at 250m resolution. A digital form of the plant hardiness zone map may be developed from this product for site-specific selection of adapted plant species.

R Based Parallelization of a Climate Suitability Model to Predict Suitable Area of Maize in Korea (국내 옥수수 재배적지 예측을 위한 R 기반의 기후적합도 모델 병렬화)

  • Hyun, Shinwoo;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.3
    • /
    • pp.164-173
    • /
    • 2017
  • Alternative cropping systems would be one of climate change adaptation options. Suitable areas for a crop could be identified using a climate suitability model. The EcoCrop model has been used to assess climate suitability of crops using monthly climate surfaces, e.g., the digital climate map at high spatial resolution. Still, a high-performance computing approach would be needed for assessment of climate suitability to take into account a complex terrain in Korea, which requires considerably large climate data sets. The objectives of this study were to implement a script for R, which is an open source statistics analysis platform, in order to use the EcoCrop model under a parallel computing environment and to assess climate suitability of maize using digital climate maps at high spatial resolution, e.g., 1 km. The total running time reduced as the number of CPU (Central Processing Unit) core increased although the speedup with increasing number of CPU cores was not linear. For example, the wall clock time for assessing climate suitability index at 1 km spatial resolution reduced by 90% with 16 CPU cores. However, it took about 1.5 time to compute climate suitability index compared with a theoretical time for the given number of CPU. Implementation of climate suitability assessment system based on the MPI (Message Passing Interface) would allow support for the digital climate map at ultra-high spatial resolution, e.g., 30m, which would help site-specific design of cropping system for climate change adaptation.

Using Digital Climate Modeling to Explore Potential Sites for Quality Apple Production (전자기후도를 이용한 고품질 사과생산 후보지역 탐색)

  • Kwon E. Y.;Jung J. E.;Seo H. H.;Yun J. I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.3
    • /
    • pp.170-176
    • /
    • 2004
  • This study was carried out to establish a spatial decision support system for evaluating climatic aspects of a given geographic location in complex terrains with respect to the quality apple production. Monthly climate data from S6 synoptic stations across South Korea were collected for 1971-2000. A digital elevation model (DEM) with a 10-m cell spacing was used to spatially interpolate daily maximum and minimum temperatures based on relevant topoclimatological models applied to Jangsoo county in Korea. For daily minimum temperature, a spatial interpolation scheme accommodating the potential influences of cold air accumulation and the temperature inversion was used. For daily maximum temperature estimation, a spatial interpolation model loaded with the overheating index was used. Freezing risk in January was estimated under the recurrence intervals of 30 years. Frost risk at bud-burst and blossom was also estimated. Fruit quality was evaluated for soluble solids, anthocyanin content, Hunter L and A values, and LID ratio, which were expressed as empirical functions of temperature based on long-term field observations. AU themes were prepared as ArcGlS Grids with a 10-m cell spacing. Analysis showed that 11 percent of the whole land area of Jangsoo county might be suitable for quality 'Fuji' apple production. A computer program (MAPLE) was written to help utilize the results in decision-making for site-selection of new orchards in this region.