• Title/Summary/Keyword: diffusion mechanism

Search Result 718, Processing Time 0.023 seconds

Numerical simulation of advection-diffusion on flow in waste stabilization ponds (1-dimension) with finite difference method forward time central space scheme

  • Putri, Gitta Agnes;Sunarsih, Sunarsih;Hariyanto, Susilo
    • Environmental Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.442-448
    • /
    • 2018
  • This paper presents the numerical simulation of advection-diffusion mechanism of BOD concentration which was used as an indicator of waste only in one flow-direction of waste stabilization ponds (1-dimension (1-D)). This model was represented in partial differential equation order 2. The purpose of this paper was to determine the simulation of the model 1-D of wastewater transport phenomena based advection-diffusion mechanism and did validate the model. Numerical methods which was used for the solution of this model is finite difference method with Forward Time Central Space scheme. The simulation results which was obtained would be compared with field observation data as a validation model. Collection of field data was carried out in the Wastewater Treatment Plant Sewon, Bantul, D.I. Yogyakarta. The results of numerical simulations were indicate that the advection-diffusion mechanism takes place continuously over time. Then validation of the model was state that there was a difference between the calculation results with the field data, with a correlation value of 0.998.

The Role of Fronts on the Vertical Transport of Atmospheric Pollutants I: 2D frontal model experiment (대기오염물질의 연직 수송에 미치는 전선의 역할 I: 2차원 전선모델을 이용한 수송 실험)

  • Nam, Jae-Cheol;Thorpe, Alan
    • Atmosphere
    • /
    • v.14 no.3
    • /
    • pp.29-40
    • /
    • 2004
  • It is well known that convections and fronts are the most effective weather systems for the vertical transport of pollutants. I used a two dimensional front model in order to investigate the mechanism of the vertical transport of atmospheric pollutants between planetary boundary layer(PBL) and free atmosphere by fronts. The main dynamic processes which contribute the vertical transport of pollutants are advection and diffusion. The transported amount of pollutant from the boundary layer to the free atmosphere increases dramatically during the developing stage of the front. 46% of pollutants are transported vertically within 12 hour and 54% are transported within 24 hour. In the meantime, compared to the total amount of pollutants transported by both advection and diffusion, about 25% (30%) less pollutants are transported when only advection (diffusion) process in included in the model. The most important mechanism for the vertical transport is vertical advection, while the vertical diffusion process plays an important role in the redistribution of pollutants in the PBL.

Impurity Diffusion Enhancement of Interdiffusion in GalnAsP Heterostructures Lattice Matched to GaAs and InP (GaAs와 InP에 격자정합된 GaINAsP 이중조직에서 불순물 확산에 의한 상호확산 촉진)

  • Park, Hyo-Hun;Lee, Gyeong-Ho;Nam, Eun-Su;Lee, Yong-Tak
    • ETRI Journal
    • /
    • v.11 no.4
    • /
    • pp.84-97
    • /
    • 1989
  • The influence of Zn, Si and Te diffusion on the interdiffusion in $GaAs-Ga_1_-xIN_xAs_1__yP_y$and InP$Ga_1__xIn_xAs_1__yP_y$ heterostructures was studied. The heterostructures were grown by liquid phase epitaxy, and the impurity diffusion into the heterostructures was carried out using metal compound or element sources. The extent of interdiffusion for both group III and V atoms was observed by depth profiling of matrix elements with secondary ion mass spectrometry and Auger electron spectroscopy. Selective enhancement of cation interdiffusion was observed by the concurrent Zn diffusion in both the GaAs based-and InP based-crystals. In contrast to the Zn diffusion, the Si diffusion in the GaAs based-crystal and the Te diffusion in the InP based-crystal enhanced both cation and anion interdiffusion to the same extent. A kick-out mechanism is proposed to explain the selective enhancement of the cation interdiffusion due to Zn, and a single vacancy mechanism is proposed for the interdiffusion due to Si and Te.

  • PDF

The Uptake of Solvent in Polymeric Thin Membranes By a Relaxation-Sorption Coupled Mechanism

  • Song, Kyu-Min;Hong, Won-Hi
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1995.10a
    • /
    • pp.43-44
    • /
    • 1995
  • The diffusion behavior of liquid into polymer has been described by Fick's law, but the departure from Fickian diffusion is frequently found. In this study, 'noble' expressions for the rates of relaxation and sorption are introduced to eliminate these limitations. The ralaxation-sorption coupled mechanism model are based on the possibility of contacting liquid molecule and the active site which has the numerical concept of free volume. The concept has an analogy of reaction rate expressed by the possibility of collision with molecules and used in adsorption and reactive extraction etc. The new model simulated by Rungc-Kutta method for initial-value problem and Fickian diffusion is caompared with experimental data. The results show that the ralaxation-sorption coupled mechanism is able to account well for Fickian and non-Fickian sorption behavior including sigmoid and two-stage. In addition, this model has a chance of expansion to multi-component sorption with ease.

  • PDF

Process Modeling and Optimization Studies in Drying of Current Transformers

  • Bhattacharya, Subhendu;D'Melo, Dawid;Chaudhari, Lokesh;Sharma, Ram Avatar;Swain, Sarojini
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.6
    • /
    • pp.273-277
    • /
    • 2012
  • The vacuum drying process for drying of paper in current transformers was modeled with an aim to develop an understanding of the drying mechanism involved and also to predict the water collection rates. A molecular as well as macroscopic approach was adopted for the prediction of drying rate. Ficks law of diffusion was adopted for the prediction of drying rates at macroscopic levels. A steady state and dynamic mass transfer simulation was performed. The bulk diffusion coefficient was calculated using weight loss experiments. The accuracy of the solution was a strong function of the relation developed to determine the equilibrium moisture content. The actually observed diffusion constant was also important to predict the plant water removal rate. Thermo gravimetric studies helped in calculating the diffusion constant. In addition, simulation studies revealed the formation of perpetual moisture traps (loops) inside the CT. These loops can only be broken by changing the temperature or pressure of the system. The change in temperature or pressure changes the kinetic or potential energy of the effusing vapor resulting in breaking of the loop. The cycle was developed based on this mechanism. Additionally, simulation studies also revealed that the actual mechanism of moisture diffusion in CT's is by surface jumps initiated by surface diffusion balanced against the surrounding pressure. Every subsequent step in the cycle was to break such loops. The effect of change in drying time on the electrical properties of the insulation was also assessed. The measurement of capacitance at the rated voltage and one third of the rated voltage demonstrated that the capacitance change is within the acceptance limit. Hence, the new cycle does not affect the electrical performance of the CT.

A study on the stabilization characteristics of the diffusion flame formed behind a bluff body (Bluff Body 후류에 형성되는 확산화염의 보염특성에 관한 연구)

  • ;;An, Jin-Geun;Song, Kyu-Keun
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.12
    • /
    • pp.3344-3351
    • /
    • 1995
  • The stability of diffusion flame formed behind a bluff body with fuel injection slits was experimentally investigated in various fuel injection angles, fuel injection ratios, grids and extension ducts. The flame stability limits, temperature distributions and length of recirculation zones, direct photographs of flames were measured in order to discuss the stabilization mechanism of the diffusion flame. The results from this study are as follows. The fuel injection angle is an important factor in determining the flame stability. Stability limits can be improved by variety of the fuel injection ratio. When the grid and extension duct are set, stability characteristics are varied with the blockage ratios, grid intervals, and grid numbers. The recirculation zone not only serves as a steady ignition source of combustion stream but also governs the stabilization mechanism.

Strain Rate Dependence of Plastic Deformation Properties of Nanostructured Materials (나노구조재료의 소성변형 성질의 변형률속도 의존성)

  • Yoon Seung Chae;Kim Hyoung Seop
    • Transactions of Materials Processing
    • /
    • v.14 no.1 s.73
    • /
    • pp.65-70
    • /
    • 2005
  • A phase mixture model was employed to simulate the deformation behaviour of metallic materials covering a wide grain size range from micrometer to nanometer scale. In this model a polycrystalline material is treated as a mixture of two phases: grain interior phase whose plastic deformation is governed by dislocation and diffusion mechanisms and grain boundary 'phase' whose plastic flow is controlled by a boundary diffusion mechanism. The main target of this study was the effect of grain size on stress and its strain rate sensitivity as well as on the strain hardening. Conventional Hall-Petch behaviour in coarse grained materials at high strain rates governed by the dislocation glide mechanism was shown to be replaced with inverse Hall-Petch behaviour in ultrafine grained materials at low strain rates, when both phases deform predominantly by diffusion controlled mechanisms. The model predictions are illustrated by examples from literature.

Solid-state sintering mechanism of blended elemental Ti-6Al-4V powders

  • Kim, Youngmoo;Song, Young-Beom;Lee, Sung Ho
    • Journal of Powder Materials
    • /
    • v.25 no.2
    • /
    • pp.109-119
    • /
    • 2018
  • The objective of this study is to reveal the sintering mechanism of mixed Ti-6Al-4V powders considering the densification and the homogenization between Ti and Al/V particles. It is found that the addition of master alloy particles into Ti enhances densification by the migration of Al into the Ti matrix prior to the self-diffusion of Ti. However, as Ti particles become coarser, sintering of the powders appears to be retarded due to slower inter-diffusion of the particles due to the reduced surface energies of Ti. Such phenomena are confirmed by a series of dilatometry tests and microstructural analyses in respect to the sintering temperature. Furthermore, the results are also consistent with the predicted activation energies for sintering. The energies are found to have decreased from 299.35 to $135.48kJ{\cdot}mol^{-1}$ by adding the Al/V particles because the activation energy for the diffusion of Al in ${\alpha}-Ti$ ($77kJ{\cdot}mol^{-1}$) is much lower than that of the self-diffusion of ${\alpha}-Ti$. The coarser Ti powders increase the energies from 135.48 to $181.16kJ{\cdot}mol^{-1}$ because the specific surface areas of Ti decrease.

Low-temperature Sintering Behavior of TiO2 Activated with CuO

  • Paek, Yeong-Kyeun;Shin, Chang-Keun;Oh, Kyung-Sik;Chung, Tai-Joo;Cho, Hyoung Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.682-688
    • /
    • 2016
  • In $TiO_2$-CuO systems, low-temperature sinterability was investigated by a conventional sintering method. Sintering temperatures were set at under $950^{\circ}C$, at which the volume diffusion is inactive. The temperatures are less than the melting point of Ag ($961^{\circ}C$), which is often used as an internal conductor in low-temperature co-fired ceramic technology. To optimize the amount of CuO dopant, various dopant contents were added. The optimum level for enhanced densification was 2 wt% CuO. Excess dopants were segregated to the grain boundaries. The segregated dopants supplied a high diffusion path, by which grain boundary diffusion improved. At lower temperatures in the solid state region, grain boundary diffusion was the principal mass transport mechanism for densification. The enhanced grain boundary diffusion, therefore, improved densification. In this regard, the results of this study prove that the sintering mechanism was the same as that of activated sintering.

Cation Self-Diffusin and Impurity Diffusion of Mn and Zn in CoO: (I) A comparison of the Residual Activity and the Tracer Sectioning Method

  • Lee, Jong-Ho;Martin, Manfred
    • The Korean Journal of Ceramics
    • /
    • v.4 no.2
    • /
    • pp.90-94
    • /
    • 1998
  • Self diffusion coefficients of $^{67}$Co and impurity diffusion coefficients of $^{51}$Mn and $^{65}$Zn in single crystalline CoO have been measured by applying different radioactive isotopes simultaneously. To compare the residual activity method and the tracer sectioning method we analyzed our tracer diffusion experiments by using both methods simultaneously. According to our experimental results, the diffusion coefficients obtained from both methods are identical within experimental error, demonstrating the relibility of our experimental procedures. The diffusion coefficients of all the isotopes obtained during these test experiments for the methodology are similar in magnitude and show similar dependences on oxygen partial pressure. These first observations indicate that impurity diffusion of Mn and Zn occur via a vacancy mechanism as known for self diffusion of cobalt.

  • PDF