• Title/Summary/Keyword: diffusion mechanism

Search Result 718, Processing Time 0.028 seconds

Numerical Simulation of the Oscillating Flow Effect in the Channel of Polymer Electrolyte Membrane Fuel Cell (왕복 유동을 통한 확산증대 효과가 연료전지 성능에 미치는 영향에 대한 수치해석)

  • Kim, Jongmin;Kang, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.20 no.4
    • /
    • pp.7-13
    • /
    • 2018
  • This study investigates the enhancement of the oxygen diffusion rate in the cathode channel of a proton exchange membrane fuel cell (PEMFC) by pure oscillating flow, which is the same as the mechanism of human breathe. Three-dimensional numerical simulation, which has the full model of the fuel cell including electrochemical reaction, ion and electronic conduction, mass transfer and thermal variation and so on, is performed to show the phenomena in the channel at the case of a steady state. This model could analysis the oscillating flow as a moving mesh calculation coupled with electrochemical reaction on the catalyst layer, however, it needs a lot of calculation time for each case. The two dimensional numerical simulation has carried on for the study of oscillating flow effect in the cathode channel of PEMFC in order to reduce the calculation time. This study shows the diffusion rate of the oxygen increased and the emission rate of the water vapor increased in the channel by oscillating flow without any forced flow.

Network Perspectives in Innovation Research: Looking Back and Moving Forward

  • HYUN, Eunjung;RHEE, Seung-Yoon
    • Asian Journal of Business Environment
    • /
    • v.11 no.1
    • /
    • pp.27-37
    • /
    • 2021
  • Purpose: This article aims to provide a balanced understanding of the structural conditions and social processes involved in the creation and diffusion of innovation. Research design, data and methodology: Drawing on organizational and economic sociology and strategic management literature, this article offers a conceptual framework that highlights the two dimensions of network structures: the vertical dimension focusing on power and legitimacy vs. the horizontal dimension highlighting information value. By organizing the literature on the functions and consequences of network, this paper advances a theoretical perspective in understanding the vast array of empirical studies on innovation involving network analysis. Results: Using the proposed framework, this article explains how the mechanisms of power, legitimacy, and information value work together with social structural factors, thus enriching our understanding of innovation. This study reveals that the information mechanism (horizontal dimension) has been most important in innovation creation and diffusion, and that trust, credibility, and legitimacy are operative in innovation diffusion. Conclusions: This paper contributes to the literature by responding to calls to extend existing frameworks to better account for the dynamics between innovation and network. In addition, this article highlights how conceptualizing innovation within the horizontal-vertical dimensions of network structures, creates new opportunities for future research.

Failure and Phase Transformation Mechanism of Multi-Layered Nitride Coating for Liquid Metal Injection Casting Mold

  • Jeon, Changwoo;Lee, Juho;Park, Eun Soo
    • Korean Journal of Materials Research
    • /
    • v.31 no.6
    • /
    • pp.331-338
    • /
    • 2021
  • Ti-Al-Si target and Cr-Si target are sputtered alternately to develop a multi-layered nitride coating on a steel mold to improve die-casting lifetime. Prior to the multi-layer deposition, a CrN layer is developed as a buffer layer on the mold to suppress the diffusion of reactive elements and enhance the cohesive strength of the multi-layer deposition. Approximately 50 nm CrSiN and TiAlSiN layers are deposited layer by layer, and form about three ㎛-thickness of multi-layered coating. From the observation of the uncoated and coated steel molds after the acceleration experiment of liquid metal injection casting, the uncoated mold is severely eroded by the adhesion of molten metallic glass. On the other hand, the multi-layer coating on the mold prevents element diffusion from the metallic glass and mold erosion during the experiment. The multi-layer structure of the coating transforms the nano-composite structured coating during the acceleration test. Since the nano-composite structure disrupts element diffusion to molten metallic glass, despite microstructure changes, the coating is not eroded by the 1,050 ℃ molten metallic glass.

Design of Copper Alloys Preventing Grain Boundary Precipitation of Copper Sulfide Particles for a Copper Disposal Canister

  • Minkyu Ahn;Jinwoo Park;Gyeongsik Yu;Jinhyuk Kim;Sangeun Kim;Dong-Keun Cho;Chansun Shin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • The major concern in the deep geological disposal of spent nuclear fuels include sulfide-induced corrosion and stress corrosion cracking of copper canisters. Sulfur diffusion into copper canisters may induce copper embrittlement by causing Cu2S particle formation along grain boundaries; these sulfide particles can act as crack initiation sites and eventually cause embrittlement. To prevent the formation of Cu2S along grain boundaries and sulfur-induced copper embrittlement, copper alloys are designed in this study. Alloying elements that can act as chemical anchors to suppress sulfur diffusion and the formation of Cu2S along grain boundaries are investigated based on the understanding of the microscopic mechanism of sulfur diffusion and Cu2S precipitation along grain boundaries. Copper alloy ingots are experimentally manufactured to validate the alloying elements. Microstructural analysis using scanning electron microscopy with energy dispersive spectroscopy demonstrates that Cu2S particles are not formed at grain boundaries but randomly distributed within grains in all the vacuum arc-melted Cu alloys (Cu-Si, Cu-Ag, and Cu-Zr). Further studies will be conducted to evaluate the mechanical and corrosion properties of the developed Cu alloys.

Study on the Removal Efficiency of a TEDA Impregnated Charcoal Bed for Methyliodide under Dry Condition (건조 조건하에서 TEDA주입 탄소층에 의한 Methyliodide 제거 효율에 관한 연구)

  • Won Jim Cho;Soon Heung Chang
    • Nuclear Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.80-88
    • /
    • 1984
  • The removal mechanism of air borne methyl iodide by triethylenediamine (TEDA) impregnated charcoal bed was investigated. The analysis of experimental data indicates that pore diffusion is the rate controlling step when the air velocity is over 20cm/sec, and both fore diffusion resistance and external mass transfer resistance are contributed to the overall resistance when the air velocity is 10cm/sec. The adsorption model to describe the performance of impregnated charcoal bed under dry condition where water vapors do not exist in air, is proposed. The calculated values and experimental results are well matched.

  • PDF

Stability of Inclined Premixed Planar Flames (기울어진 예혼합 평면화염의 안정성)

  • Lee, Dae-Keun;Kim, Moon-Uhn;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.97-106
    • /
    • 2004
  • Stability of laminar premixed planar flames inclined in gravitational field which generate vorticity is asymptotically examined. The flame structure is resolved by a large activation energy asymptotics and a long wave approximation. The coupling between hydrodynamics and diffusion processes is included and near-unity Lewis number is assumed. The results show that as the flame is more inclined from the horizontal plane it becomes more unstable due to not only the decrease of stabilizing effect of gravity but also the increase of destabilizing effect of rotational flow. The obtained dispersion relation involves the Prandtl number and shows the destabilizing effect of viscosity. The analysis predicts that the phase velocity of unstable flame wave depends on not only the flame angle but also the Lewis number. For relatively short wave disturbances, still much larger than flame thickness, the most unstable wavelength is nearly independent on the flame angle and the flame can be stabilized by gravity and diffusion mechanism.

  • PDF

Oxygen sensor for the low temperature-measurement using yttria stabilized zirconia(YSZ) electrolyte and Ag electrode (YSZ 전해질과 은 전극을 이용한 저온 산소센서에 대한 연구)

  • Yang, Young-Chang;Park, Chong-Ook
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.97-101
    • /
    • 2006
  • Silver electrode having a high Electrocatalytic activity is oxygen-permeable electrode, in which oxygen ad-atoms are adsorbed and moved toward YSZ electrolyte by bulk diffusion. It is the different point in comparison to usual porous electrodes, especially platinum, which react with oxygen only in TPBs(Three Phase Boundaries). Also ad-atoms at TPBs of Pt are diffused to YSZ electrolyte by interfacial diffusion mechanism. These properties were used for turning down the operating temperature of YSZ from over $600^{\circ}C$ to below $450^{\circ}C$. The different heat-treatment temperature between a working electrode and a reference electrode suppresses the formation of silver oxides and reduces a volatility of Ag as well. Above all, these own characteristics and special processes of Ag improved a long-term stability of a oxygen sensor.

Thermal Transport Phenomena in the FET Typed MWCNT Gas Sensor with the 60 μm Electrode Distance (60 μm의 전극 간극을 갖는 FET식 MWCNT 가스센서에서 열 유동 현상)

  • Jang, Kyung-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.6
    • /
    • pp.403-407
    • /
    • 2015
  • Generally, MWCNT, with thermal, chemical and electrical superiority, is manufactured with CVD (chemical vapor deposition). Using MWCNT, it is comonly used as gas sensor of MOS-FET structure. In this study, in order to repeatedly detect gases, the author had to effectively eliminate gases absorbed in a MWCNT sensor. So as to eliminate gases absorbed in a MWCNT sensor, the sensor was applied heat of 423[K], and in order to observe how the applied heat was diffused within the sensor, the author interpreted the diffusion process of heat, using COMSOL interpretation program. In order to interpret the diffusion process of heat, the author progressed modeling with the structure of MWCNT gas sensor in 2-dimension, and defining heat transfer velocity($u={\Delta}T/{\Delta}x$), accorded to governing equation within the sensor, the author proposed heat transfer mechanism.

STRENGTH CHANGES OF SURROUNDING CLAY DUE TO SOIL-CEMENT COLUMN INSTALLATION

  • Miura, Norihiko
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1997.10a
    • /
    • pp.19-36
    • /
    • 1997
  • This paper discusses the reduction and subsequent recovery and increase of shear strength of clay in the vicinity of soil-cement column. Laboratory and field tests were conducted to investigate the effects on surrounding clay during and after soil-cement column installation in soft Ariake clay. Discussions were made on the mechanism of strength changes of clay by considering the thixotropic recovery, reconsolidation effect, penetration of cement slurry and diffusion of exchangeable cations. On the basis of field and laboratory observations, 10 days after column installation, the decreased shear strength of surrounding clay during mixing was recovered and 30 days later, shear strength of surrounding clay increased 30% by average. Therefore, it is recommended that the increase of shear strength of clay can be taken into consideration in the bearing capacity and stability analysis of the composite ground.

  • PDF

A Study of Eutectic Bonding for Aluminium using Novel Brazing Process (Novel Brazing법에 의한 Al의 공정접합에 관한 연구)

  • 정병호;김무길;이성열
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.59-66
    • /
    • 2000
  • To investigate the optimum brazing condition, variation of bonded structure and mechanical properties of novel brazed pure Al with bonding condition (brazing temperature, time and Si/flux ratio) was studied. A basic study of the bonding mechanism was also examined. The optimum brazing condition was obtained at $590^{\circ}$ for 2 minutes and the bonded structure showed that it is composed of almost entirely eutectic Al-Si with near eutectic composition. At higher brazing temperature $630^{\circ}$, hypoeutectic Al-Si structure was observed in the bonded area and resulted in erosion of base metal. The thickness of eutectic layer formed in optimum brazing temperature increased linearly with the square root of time, showing a general diffusion controlled process. The ultimate tensile strength of bonded joint brazed at an optimum brazing condition was about 60% of base metal and its fracture surface showed a brittle mode.

  • PDF