DOI QR코드

DOI QR Code

Thermal Transport Phenomena in the FET Typed MWCNT Gas Sensor with the 60 μm Electrode Distance

60 μm의 전극 간극을 갖는 FET식 MWCNT 가스센서에서 열 유동 현상

  • Jang, Kyung-Uk (Department of Electrical Engineering, Gachon University)
  • 장경욱 (가천대학교 전기공학과)
  • Received : 2015.05.11
  • Accepted : 2015.05.24
  • Published : 2015.06.01

Abstract

Generally, MWCNT, with thermal, chemical and electrical superiority, is manufactured with CVD (chemical vapor deposition). Using MWCNT, it is comonly used as gas sensor of MOS-FET structure. In this study, in order to repeatedly detect gases, the author had to effectively eliminate gases absorbed in a MWCNT sensor. So as to eliminate gases absorbed in a MWCNT sensor, the sensor was applied heat of 423[K], and in order to observe how the applied heat was diffused within the sensor, the author interpreted the diffusion process of heat, using COMSOL interpretation program. In order to interpret the diffusion process of heat, the author progressed modeling with the structure of MWCNT gas sensor in 2-dimension, and defining heat transfer velocity($u={\Delta}T/{\Delta}x$), accorded to governing equation within the sensor, the author proposed heat transfer mechanism.

Keywords

References

  1. H. S. Kim and K. U. Jang, J. Korean Inst. Electr. Electron. Mater. Eng., 26, 325 (2013).
  2. H. S. Kim, S. H. Lee, and K. U. Jang, J. Korean Inst. Electr. Electron. Mater. Eng., 26, 707 (2013).
  3. W. J. Lee, M. K. Choi, and K. U. Jang, J. KSDIT, 11, 55 (2012).
  4. H. S. Kim, Y. S. Park, and K. U. Jang, J. Korean Inst. Electr. Electron. Mater. Eng., 26, 257 (2014).
  5. http://www.comsol.com (2015).
  6. E.J.F. Dickinson, J. G. Limon-Petersen, and R. G. Compton, J. Solid State Electrochem., 15, 1335 (2011). https://doi.org/10.1007/s10008-011-1323-x
  7. D. Britz, Digital Simulation in Electrochemistry (3rd) (Springer-Verlag, Berlin, 2005).
  8. I. J. Cutress, E.J.F. Dickinson, and R. G. Compton, J. Electroanal. Chem., 638, 76 (2010). https://doi.org/10.1016/j.jelechem.2009.10.017
  9. O. V. Klymenko, I. Svir, A. Oleinick, and C. Amatore, Chem. Phys. Chem., 13, 845 (2012). https://doi.org/10.1002/cphc.201100825
  10. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerial Recipes: The Art of Scientific Computing (3rd.) (Cambridge University Press, Cambridge (2007).
  11. N. Godino, X. Borrise, F. X. Munoz, F. J. del Campo, and R. G. Compton, J. Phys. Chem. C, 113, 11119 (2009). https://doi.org/10.1021/jp9031354
  12. H. Reller, F. Kirowa-Eisner, and E. Gileadi, J. Electroanal. Chem., 138, 65 (1982). https://doi.org/10.1016/0022-0728(82)87128-3
  13. A. Lavacchi, U. Bardi, C. Borri, S. Caporali, C. Fossati, and I. Perissi J. Appl. Electrochem., 39, 2159 (2009). https://doi.org/10.1007/s10800-009-9797-2