• Title/Summary/Keyword: diffraction.

Search Result 8,670, Processing Time 0.029 seconds

Diffraction Efficiency Change in PVA/AA Photopolymer Films by SeO2 and TiO2 Nano Particle Addition (PVA/AA계 광 고분자 필름의 SeO2 및 TiO2 나노 입자 첨가에 의한 회절 효율 변화)

  • Joe, Ji-Hun;Lee, Ju-Chul;Yoon, Sung;Nam, Seung-Woong;Kim, Dae-Heum
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.2
    • /
    • pp.82-88
    • /
    • 2010
  • Photopolymer is a material for recording three dimensional holograms containing photo information. Photopolymer has been found to be a proper material due to many advantages such as high DE value, easy processing, and low price. Compositions of PVA, monomer, initiater and photosensitizer were determined by previous experiments and the compositions of $SeO_2$ and $TiO_2$ were considered as variable to find out the effects of $TiO_2$ on DE. The DE values were constant for the varying compositions of $TiO_2$ (0.1 mg~1.0 mg). In other words, $TiO_2$ is not directly effective on the DE values. Composition change experiments from $SeO_2$ 0.1 mg, $TiO_2$ 0.9 mg to $SeO_2$ 0.9 mg, $TiO_2$ 0.1 showed a maximum DE value of 73.75% at a component of $SeO_2$ 0.8 mg, $TiO_2$ 0.2 mg. It seemed that regardless of the amount of $TiO_2$, increasing the amount of $SeO_2$ gently increases DE`s. If nano particles are heavily added, transparent films could not be made due to the separation of particles by the solubility decrease. Photopolymer films could be made with high DE values for an extensive angle range if $TiO_2$ additions were kept minimum and $SeO_2$ additions were kept maximum.

Exchange Coupling Field and Thermal Stability of Ni80Fe20/[Ir22/Mn78-Mn]/Co75Fe25 Multilayer Depending on Mn Content (Ni80Fe20/[Ir22/Mn78-Mn]/Co75Fe25 다층박막에서 Mn 함유량에 의존하는 교환결합력과 열적안정성)

  • Kim, B.K.;Lee, J.Y.;Kim, S.S.;Hwang, D.G.;Lee, S.S.;Hwang, J.Y.;Kim, M.Y.;Rhee, J.R.
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.5
    • /
    • pp.187-192
    • /
    • 2003
  • The magnetic and thermal properties of NiFe/[IrMn-Mn]/CoFe with Mn additions have been studied. As-deposited CoFe pinned layers with [IrMn-Mn]layer had dominantly larger exchange biasing field ( $H_{ex}$) and blocking temperature ( $T_{b}$) than those with pure I $r_{22}$M $n_{78}$ used. The $H_{ex}$ and $T_{b}$ improved with 76.8-78.1 vol% Mn, but those of the NiFe/IrMn/CoFe dropped considerably with more addition of 0.6 vol % Mn. The average x-ray diffraction peak ratios of fcc [(111)CoFe, NiFe]/(111)IrM $n_3$ textures for the Mn inserted total vol of 75.5, 77.5, and 79.3% were about 1.4, 0.8, and 0.6, respectively. For the sample without Mn inserted layer, the $H_{ex}$ between IrMn and CoFe layers was almost zero, but it increased to 100 Oe after annealing of 250 $^{\circ}C$. For as-grown two multilayers samples with ultra-thin Mn layers of 77.5 and 78.7 vol %, the $H_{ex}$s were 259 and 150 Oe, respectively. In case of IrMn with 77.5 vol% Mn, the $H_{ex}$ was increased up to 475 Oe at 350 $^{\circ}C$ but decreased to 200 Oe at 450 $^{\circ}C$, respectively. The magnetic properties and thermal stabilities of NiFe/[IrMn-Mn]/CoFe multilayer were enhanced with Mn additions. In applications where higher $H_{ex}$ and $T_{b}$ are required, proper contents of Mn can be used. be used. used.

Crystal Structure of Dehydrated Partially Cobalt(II)-Exchanged Zeolite X, $Co_{41}Na_{10}-X$ (부분적으로 $Co^{2+}$ 이온으로 치환된 제올라이트 X, $Co_{41}Na_{10}-X$를 탈수한 결정구조)

  • Jang, Se-Bok;Jeong, Mi-Suk;Han, Young-Wook;Kim, Yang
    • Korean Journal of Crystallography
    • /
    • v.6 no.2
    • /
    • pp.125-133
    • /
    • 1995
  • The crystal structure of dehydrated, partially Co(II)-exchanged zeolite X, stoichiometry Co2+Na+-X (Co41+Na10Si100Al92O384) per unit cell, has been determined from three-dimensional X-ray diffraction data gathered by counter methods. The structure was solved and refined in the cubic space group Fd3:α=24.544(1)Å at 21(1)℃. The crystal was prepared by ion exchange in a flowing stream using a solution 0.025 M each in Co(NO3)2 and Co(O2CCH3)2. The crystal was then dehydrated at 380℃ and 2×10-6 Torr for two days. The structure was refined to the final error indices, R1=0.059 and R2=0.046 with 211 reflections for which I > 3σ(I). Co2+ ions and Na+ ions are located at the four different crystallographic sites. Co2+ ions are located at two different sites of high occupancies. Sixteen Co2+ ions are located at the center of the double six-ring (site I; Co-O = 2.21(1)Å, O-Co-O = 90.0(4)°) and twenty-five Co2+ ions are located at site II in the supercage. Twenty-five Co2+ ions are recessed 0.09Å into the supercage from its three oxygen plane (Co-O = 2.05(1)Å, O-Co-O = 119.8(7)°). Na+ ions are located at two different sites of occupandies. Seven Na+ ions are located at site II in the supercage (Na-O = 2.29(1)Å, O-Na-O = 102(1)°). Three Na+ ions are statistically distribyted over site III, a 48-fold equipoint in the supercages on twofold axes (Na-O = 2.59(10)Å, O-Na-O = 69.0(3)°). Seven Na+ ions are recessed 1.02Å into the supercage from the three oxygen plane. It appears that Co2+ ions prefer sites I and II in order, and that Na+ ions occupy the remaining sites, II and III.

  • PDF

Two Crystal Structures of Dehydrated $Ag^+$ and $Rb^+$ Exchanged Zeolite A, $Ag^{12-x}Rb_{x}-A$, x = 2 and 3 ($Ag^+$ 이온과 $Rb^+$ 이온으로 치환된 제올라이트 A ($Ag^{12-x}Rb_{x}-A$, x = 2 및 3) 를 탈수한 결정구조)

  • Yang Kim;Seong Hwan Song;Duk Soo Kim;Young Wook Han;Dong Kyu Park
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.18-24
    • /
    • 1989
  • Two crystal structures of dehydrated $Ag^+$ and $Rb^+$ exchanged zeolite A, stoichiometries of $Ag_{9}Rb_{3}-A$ (a = 12.278(2)${\AA}$) and $Ag_{10}Rb_{2}-A$ (a = 12.286(2)${\AA}$) per unit cell, have been determined by single crystal x-ray diffraction techniques. Their structures were solved and refined in the cubic space group Pm3m at 21(1)$^{\circ}$C. The crystals of $Ag_{10}Rb_{2}-A$ and $Ag_{10}Rb_{2}-A$ were prepared by flow methods using exchanged solution in which mole ratios of AgNO$_3$ and RbNO$_3$ were 1:5 and 1:50, respectively, with the total concentration of 0.05 M. The structures of the dehydrated $Ag_{9}Rb_{3}-A$ and the $Ag_{10}Rb_{2}-A$ were refined to the final error indices, $R_1$ = 0.064 and $R_2$ = 0.060 with 291 reflections, and $R_1$ = 0.063 and $R_2$ = 0.080 with 416 reflections respectively, for which I >3${\sigma}$(I). In both structures, one reduced silver atom per unit cell was found inside the sodalite cavity. It may be present as a hexasilver cluster in 1/6 of the sodalite units or as an isolated Ag atom coordinated to 4 $Ag^+$ ions in each sodalite unit to give $(Ag_5)^{4+}$, symmetry 4 mm. In the structure of dehydrated $Ag_{9}Rb_{3}-A$, 8 $Ag^+$ ions lie on the threefold axis and each is nearly at the center of the 8-rings at the sites of $D_{4h}$ symmetry. In the structure of dehydrated $Ag_{10}Rb_{2}-A$, two crystallographically different eight 6-ring $Ag^+$ ions were found; $7Ag^+$ ions in the (111) planes of their O(3) framework oxygens and one $Ag^+$ ion inside of sodalite cavity. Two crystallographically different 8-ring cations were also found; two $Rb^+$ ions at the centers of the 8-oxygen rings and one $Ag^+$ ion into the large cavity. Both structures indicate that $Rb^+$ ions prefer to occupy the 8-ring sites, while $Ag^+$ ions prefer to occupy the 6-ring sites.

  • PDF

The Effect of Chemical Composition and Sintering Temperature on The Improvement of Physical Properties of Mn-Zn Ferrites (Mn-Zn ferrite의 성분 및 소결 온도에 따른 물리적 특성의 향상 연구)

  • 고재귀
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.4
    • /
    • pp.269-274
    • /
    • 1995
  • The basic composition of Mn-Zn ferrite was $Mn_{0.631}Zn_{0.316}Fe_{2.053}O_{4}$(specimen A), $Mn_{0.584}Zn_{0.312}Fe_{2.104}O_{4}$(specimen B) and $Mn_{0.538}Zn_{0.308}Fe_{2.154}O_{4}$(specimen C) with additional 0.1 mol % $CaCo_{3}$ and 0.04 mol % $V_{2}O_{5}$. For high per¬meability and acceleration of grain growth, $CaCo_{3}$ and $V_{2}O_{5}$. was added. The mixture of the law materials was calcinated at $950^{\circ}C$ for 3 hours and then milled. The compacts of toroidal type were sintered at different temperature($1250^{\circ}C$, $1300^{\circ}C$, $1350^{\circ}C$) for 2 hours in $N_2$ atmosphere. The effects of the various raw material composition and sintered temperature on the physical properties of Mn-Zn ferrite have been investigated. They turned out to be spinel structure by X-ray diffraction and the size of grain from SEM was from $18\;\mu\textrm{m}\;to\;23\;\mu\textrm{m}$. As the sintering temperature was increased from $1250^{\circ}C$ to $1350^{\circ}C$, the initial permeability and magnetic induction has increased and the both of Q factor and coercive force has decreased. The coercive force and curie temperature were almost the same at each specimen Their values were about 0.45 Oe and $200^{\circ}C$. The frequency of specimen will used in the range from 200 kHz to 2 MHz. The basic composition of $Mn_{0.584}Zn_{0.312}Fe_{2.104}O_{4}$(specimen B) sintered at $1300^{\circ}C$ shows the best results at magnetic induction (Br & Bm).

  • PDF

Characterization of SiC nanowire Synthesized by Thermal CVD (열 화학기상증착법을 이용한 탄화규소 나노선의 합성 및 특성연구)

  • Jung, M.W.;Kim, M.K.;Song, W.;Jung, D.S.;Choi, W.C.;Park, C.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.4
    • /
    • pp.307-313
    • /
    • 2010
  • One-dimensional cubic phase silicon carbide nanowires (${\beta}$-SiC NWs) were efficiently synthesized by thermal chemical vapor deposition (TCVD) with mixtures containing Si powders and nickel chloride hexahydrate $(NiCl_2{\cdot}6H_2O)$ in an alumina boat with a carbon source of methane $(CH_4)$ gas. SEM images are shown that the growth temperature (T) of $1,300^{\circ}C$ is not enough to synthesize the SiC NWs owing to insufficient thermal energy for melting down a Si powder and decomposing the methane gas. However, the SiC NWs could be synthesized at T>$1,300^{\circ}C$ and the most efficient temperature for growth of SiC NWs is T=$1,400^{\circ}C$. The synthesized SiC NWs have the diameter with an average range between 50~150 nm. Raman spectra clearly revealed that the synthesized SiC NWs are forming of a cubic phase (${\beta}$-SiC). Two distinct peaks at 795 and $970 cm^{-1}$ in Raman spectra of the synthesized SiC NWs at T=$1,400^{\circ}C$ represent the TO and LO mode of the bulk ${\beta}$-SiC, respectively. XRD spectra are also supported to the Raman spectra resulting in the strongest (111) peaks at $2{\Theta}=35.7^{\circ}$, which is the (111) plane peak position of 3C-SiC. Moreover, the gas flow rate of 300 sccm for methane is the optimal condition for synthesis of a large amount of ${\beta}$-SiC NW without producing the amorphous carbon structure shown at a high methane flow rate of 800 sccm. TEM images are shown two kinds of the synthesized ${\beta}$-SiC NWs structures. One is shown the defect-free ${\beta}$-SiC NWs with a (111) interplane distance of 0.25 nm, and the other is the stacking-faulted ${\beta}$-SiC NWs. Also, TEM images exhibited that two distinct SiC NWs are uniformly covered with $SiO_2$ layer with a thickness of less 2 nm.

Property of Nickel Silicide with 60 nm and 20 nm Hydrogenated Amorphous Silicon Prepared by Low Temperature Process (60 nm 와 20 nm 두께의 수소화된 비정질 실리콘에 따른 저온 니켈실리사이드의 물성 변화)

  • Kim, Joung-Ryul;Park, Jong-Sung;Choi, Young-Youn;Song, Oh-Sung
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.6
    • /
    • pp.528-537
    • /
    • 2008
  • 60 nm and 20 nm thick hydrogenated amorphous silicon(a-Si:H) layers were deposited on 200 nm $SiO_2$/single-Si substrates by inductively coupled plasma chemical vapor deposition(ICP-CVD). Subsequently, 30 nm-Ni layers were deposited by an e-beam evaporator. Finally, 30 nm-Ni/(60 nm and 20 nm) a-Si:H/200 nm-$SiO_2$/single-Si structures were prepared. The prepared samples were annealed by rapid thermal annealing(RTA) from $200^{\circ}C$ to $500^{\circ}C$ in $50^{\circ}C$ increments for 40 sec. A four-point tester, high resolution X-ray diffraction(HRXRD), field emission scanning electron microscopy(FE-SEM), transmission electron microscopy(TEM), and scanning probe microscopy(SPM) were used to examine the sheet resistance, phase transformation, in-plane microstructure, cross-sectional microstructure, and surface roughness, respectively. The nickel silicide from the 60 nm a-Si:H substrate showed low sheet resistance from $400^{\circ}C$ which is compatible for low temperature processing. The nickel silicide from 20 nm a-Si:H substrate showed low resistance from $300^{\circ}C$. Through HRXRD analysis, the phase transformation occurred with silicidation temperature without a-Si:H layer thickness dependence. With the result of FE-SEM and TEM, the nickel silicides from 60 nm a-Si:H substrate showed the microstructure of 60 nm-thick silicide layers with the residual silicon regime, while the ones from 20 nm a-Si:H formed 20 nm-thick uniform silicide layers. In case of SPM, the RMS value of nickel silicide layers increased as the silicidation temperature increased. Especially, the nickel silicide from 20 nm a-Si:H substrate showed the lowest RMS value of 0.75 at $300^{\circ}C$.

Effect of Carrier Confinement and Optical Properties of Two-dimensional Electrons in Al0.3Ga0.7N/GaN and Al0.3Ga0.7N/GaN/Al0.15Ga0.85N/GaN Heterostructures (Al0.3Ga0.7N/GaN 및 Al0.3Ga0.7N/GaN/Al0.15Ga0.85N/GaN 이종접합 구조에서 운반자 구속 효과와 이차원 전자가스의 광학적 특성)

  • Kwack, H.S.;Lee, K.S.;Cho, H.E.;Lee, J.H.;Cho, Y.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.4
    • /
    • pp.359-364
    • /
    • 2008
  • We have investigated optical and structural properties of $Al_{0.3}Ga_{0.7}N$/GaN and $Al_{0.3}Ga_{0.7}N/GaN/Al_{0.15}Ga_{0.85}N/GaN$ heterostructures (HSs) grown by metal-organic chemical vapor deposition, by means of Hall measurement, high-resolution X-ray diffraction, and temperature- and excitation power-dependent photoluminescence (PL) spectroscopy. A strong GaN band edge emission and its longitudinal optical phonon replicas were observed for all the samples. At 10 K, a 2DEG-related PL peak located at ${\sim}\;3.445\;eV$ was observed for $Al_{0.3}Ga_{0.7}N$/GaN HS, while two 2DEG peaks at ${\sim}\;3.42$ and ${\sim}\;3.445\;eV$ were observed for $Al_{0.3}Ga_{0.7}N/GaN/Al_{0.15}Ga_{0.85}N/GaN$ HS due to the additional $Al_{0.15}Ga_{0.85}N$ layers. Moreover, the emission intensity of the 2DEG peak was higher in $Al_{0.3}Ga_{0.7}N/GaN/Al_{0.15}Ga_{0.85}N/GaN$ HS than in $Al_{0.3}Ga_{0.7}N$/GaN HS probably due to an effective confinement of the photo-excited holes by the additional $Al_{0.15}Ga_{0.85}N$ layers. The 2DEG-related emission intensity decreased with increasing temperature and disappeared at temperatures above 150 K. To investigate the origin of the new 2DEG peaks, the energy-band structure for multiple AlGaN/GaN HSs were simulated and compared with the experimental data. As a result, the observed high- and low-energy peaks of 2DEG can be attributed to the spatially-separated 2DEG emissions formed at different AlGaN/GaN heterointerfaces.

Relationship between Physicochemical Properties, Heavy Metal Contents and Magnetic Susceptibility of Soils (토양의 물리화학적 특성, 중금속 함량, 대자율 간의 상호관계 연구)

  • Chon, Chul-Min;Park, Jeong-Sik;Kim, Jae-Gon;Lee, Youn-Soo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.281-295
    • /
    • 2010
  • This paper deals with magnetic susceptibility, mineralogy, soil properties (pH, EC, CEC, loss on ignition), iron and manganese oxides, the content and partitioning of heavy metals (As, Cd, Cr, Cu, Ni, Pb, Zn), and their mutual relationship in the soil samples of an unpolluted, abandoned mine area, and industrial complex area. The various minerals derived from weathered bedrock were identified by X-ray diffraction in the unpolluted soil samples, except for the magnetic minerals. XRD analysis also revealed the existence of hematite and magnetite related to mine tailings and waste rocks in the abandoned mine area samples. The industrial complex area samples had carbonate minerals, such as calcite and dolomite, that might be due to anthropogenic deposition. The sum of the reducible, oxidizable, and residual fractions was over 80% for the abandoned mine area samples and over 50% for the industrial complex area samples using the sequential extraction method. The industrial complex area samples had a relatively high carbonate fraction that was associated with carbonate minerals. The content of aqua regia-extractable Fe, Mn, As, and Zn had a high positive correlation with the content of the dithionite-citrate-bicarbonate (DCB)-extractable method related to Fe/Mn oxide phases. The 54% and 58% of aqua regia-extractable Fe and As content, respectively, acted together with the concentrations of the DCB-extractable phases. Magnetic susceptibility values of total samples ranged from 0.005 to $2.131{\times}10^{-6}m^3kg^{-1}$. The samples including iron oxide minerals, such as hematite and magnetite, had a high magnetic susceptibility. The magnetic susceptibility showed a significant correlation with the heavy metals, Cd (r=0.544, p<0.05), Cr (r=0.714, p<0.01), Ni (r=0.645, p<0.05), Pb (r=0.703, p<0.01), and Zn (r=0.496, p<0.01), as well as Fe (r=0.608, p<0.01) and Mn (r=0.615, p<0.01). The aqua regia-extractable Fe and Mn content had a significant positive correlation with Cd, Cr, Cu, Ni, and Zn. However, the DCB-extractable Fe and Mn content had a significant positive correlation with As and Ni, indicating that the heavy metals were associated with Fe and Mn oxide minerals.

The Structural and Electrochemical Properties of Li[Ni0.6-xBaxCo0.1Mn0.3]O2 (x = 0, 0.01) by Barium Doping (Barium 도핑에 따른 Li[Ni0.6-xBaxCo0.1Mn0.3]O2(x=0, 0.01) 의 구조 분석 및 전기화학적 특성)

  • Jang, Byeong-Chan;Yoo, Gi-Won;Yang, Su-Bin;Min, Song-Gi;Son, Jong-Tae
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.4
    • /
    • pp.222-228
    • /
    • 2014
  • Ni-rich system $Li[Ni_{1-x-y}Co_xMn_y]O_2$ of lithium secondary battery cathode material keep a high discharge capacity. However, by the Ni content increases, there is a problem that the electrochemical properties and stability of the structure are reduced. In order to solve these problems, research for positive ion doping is performed. The one of the cathode material, barium-doped $Li[Ni_{0.6-x}Ba_xCo_{0.1}Mn_{0.3}]O_2$ (x=0.01), was synthesized by the precursor, $Ni_{0.6}Co_{0.1}Mn_{0.3}(OH)_2$, from the co-precipitation method. The barium doped materials have studied the structural and electrochemical properties. The analysis of structural properties, results of X-ray diffraction analysis, and those results confirmed the change of the lattice from the binding energy in the structure by barium doping. Increased stability of the layered structure was observed by $I_{(006)}+I_{(102)}/I_{(101)}$(R-factor) ratio decrease. we expected that the electrochemical characteristics are improved. 23 mAh/g discharge capacity of barium-doped $Li[Ni_{0.6-x}Ba_xCo_{0.1}Mn_{0.3}]O_2$ (x=0.01) electrode is higher than discharge capacity of $Li[Ni_{0.6}Co_{0.1}Mn_{0.3}]O_2$ due to decrease overvoltage. And, through the structural stability was confirmed that improved the cycle characteristics. We caused a reduction in charge transfer resistance between the electrolyte and the electrode was confirmed that the C-rate characteristics are improved.