DOI QR코드

DOI QR Code

Characterization of SiC nanowire Synthesized by Thermal CVD

열 화학기상증착법을 이용한 탄화규소 나노선의 합성 및 특성연구

  • Jung, M.W. (BK21 Physics Research Division and Department of Energy Science, Sungkyunkwan University) ;
  • Kim, M.K. (BK21 Physics Research Division and Department of Energy Science, Sungkyunkwan University) ;
  • Song, W. (BK21 Physics Research Division and Department of Energy Science, Sungkyunkwan University) ;
  • Jung, D.S. (BK21 Physics Research Division and Department of Energy Science, Sungkyunkwan University) ;
  • Choi, W.C. (Electronic materials research center, Korea Institute of Science and Technology (KIST)) ;
  • Park, C.J. (BK21 Physics Research Division and Department of Energy Science, Sungkyunkwan University)
  • 정민욱 (성균관대학교, BK21 물리연구단, 에너지과학과) ;
  • 김민국 (성균관대학교, BK21 물리연구단, 에너지과학과) ;
  • 송우석 (성균관대학교, BK21 물리연구단, 에너지과학과) ;
  • 정대성 (성균관대학교, BK21 물리연구단, 에너지과학과) ;
  • 최원철 (한국과학기술연구원(KIST), 전자재료 센터) ;
  • 박종윤 (성균관대학교, BK21 물리연구단, 에너지과학과)
  • Received : 2010.04.23
  • Accepted : 2010.06.11
  • Published : 2010.07.30

Abstract

One-dimensional cubic phase silicon carbide nanowires (${\beta}$-SiC NWs) were efficiently synthesized by thermal chemical vapor deposition (TCVD) with mixtures containing Si powders and nickel chloride hexahydrate $(NiCl_2{\cdot}6H_2O)$ in an alumina boat with a carbon source of methane $(CH_4)$ gas. SEM images are shown that the growth temperature (T) of $1,300^{\circ}C$ is not enough to synthesize the SiC NWs owing to insufficient thermal energy for melting down a Si powder and decomposing the methane gas. However, the SiC NWs could be synthesized at T>$1,300^{\circ}C$ and the most efficient temperature for growth of SiC NWs is T=$1,400^{\circ}C$. The synthesized SiC NWs have the diameter with an average range between 50~150 nm. Raman spectra clearly revealed that the synthesized SiC NWs are forming of a cubic phase (${\beta}$-SiC). Two distinct peaks at 795 and $970 cm^{-1}$ in Raman spectra of the synthesized SiC NWs at T=$1,400^{\circ}C$ represent the TO and LO mode of the bulk ${\beta}$-SiC, respectively. XRD spectra are also supported to the Raman spectra resulting in the strongest (111) peaks at $2{\Theta}=35.7^{\circ}$, which is the (111) plane peak position of 3C-SiC. Moreover, the gas flow rate of 300 sccm for methane is the optimal condition for synthesis of a large amount of ${\beta}$-SiC NW without producing the amorphous carbon structure shown at a high methane flow rate of 800 sccm. TEM images are shown two kinds of the synthesized ${\beta}$-SiC NWs structures. One is shown the defect-free ${\beta}$-SiC NWs with a (111) interplane distance of 0.25 nm, and the other is the stacking-faulted ${\beta}$-SiC NWs. Also, TEM images exhibited that two distinct SiC NWs are uniformly covered with $SiO_2$ layer with a thickness of less 2 nm.

본 연구에서는 열 화학기상증착법(thermal chemical vapor deposition)을 이용하여 분말 형태의 규소(Si)와 염화니켈 수화물 $(NiCl_2{\cdot}6H_2O)$을 혼합한 후 탄소공급원인 $CH_4$ 가스를 주입하여 탄화규소 나노선(SiC nanowire)을 합성하였다. 합성 온도와 $CH_4$ 가스 유량 변화에 따른 탄화규소 나노선의 구조적 특성을 분석한 결과, 합성온도가 $1,400^{\circ}C$, $CH_4$ 가스의 유량이 300 sccm인 경우가 탄화규소 나노선의 합성에 최적화된 조건임을 라만 분광법(Raman spectroscopy)과 X-선 회절(X-ray diffraction), 주사전자현미경(scanning electron microscopy), 그리고 투과전자현미경(transmission electron microscopy) 분석을 통해 확인하였다. 합성된 탄화규소 나노선의 직경은 약 50~150 nm이며, 곧은 방향성과 높은 결정성을 가지는 입방구조(cubic structure)를 지니고 있었다.

Keywords

References

  1. Y. Gogots, Nanomaterials Handbook (Taylor & Francis Group, 2006), pp.283-316.
  2. Z. M. Wang, One-Dimensional Nanostructures (Springer, New York, 2008), pp.17-59.
  3. W. Song, W. C. Choi, C. Jeon, D. H. Ryu, S. Y. Lee, Y. S. Shin, and C. Y. Park, J. Korean Vac. Soc. 16, 377 (2007). https://doi.org/10.5757/JKVS.2007.16.5.377
  4. W. Lu and C.M. Lieber, J. Phys. D: Appl. Phys. 39, R387 (2006). https://doi.org/10.1088/0022-3727/39/21/R01
  5. J. B. Casady and R. W. Johnson, Solid-State Electronics 39, 1409 (1996). https://doi.org/10.1016/0038-1101(96)00045-7
  6. T. Taguchi, N. Igawa, H. Yamamoto, and S. Jitsukawa, J. Am. Ceram. Soc. 88, 459 (2005). https://doi.org/10.1111/j.1551-2916.2005.00066.x
  7. S. Z. Deng, Z. S. Wu, J. Zhou, N. S. Xu, J. Chen, and J. Chen, Chem. Phys. Lett. 356, 511 (2002). https://doi.org/10.1016/S0009-2614(02)00403-7
  8. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Thomson Learning, Inc., 1976), pp. 1.
  9. A. C. Ferrari and J. Robertson, Phys. Rev. B 61, 14095 (2000). https://doi.org/10.1103/PhysRevB.61.14095
  10. D. Olego and M. Cardona, Phys. Rev. B 25, 3889 (1982). https://doi.org/10.1103/PhysRevB.25.3889
  11. S. Nakashima and H. Harima, Phys. stat. sol. (a) 162, 39 (1997). https://doi.org/10.1002/1521-396X(199707)162:1<39::AID-PSSA39>3.0.CO;2-L
  12. M. Bechelany, A. Brioude, D. Cornu, G. Ferro, and P. Miele, Adv. Funct. Mater. 17, 939 (2007). https://doi.org/10.1002/adfm.200600816
  13. R.J. Iwanowski, K. Fronc, W. Paszkowicz, and M. Heinonen, J. Alloys. Compd. 286, 143 (1999). https://doi.org/10.1016/S0925-8388(98)00994-3
  14. K. W. Lee, K. S. Yu, S. J. Ku, C. G. Kim, W. Koh, Y. K. Joh, and Y. Kim, J. Korean Vac. Soc. 5, 133 (1996).
  15. N. Shirahata, K. Kijima, X. Ma, and Y. Ikuhara, Jpn. J. Appl. Phys. 40, 3696 (2001).
  16. D. H. Wang, D. Yu, Q. Wang, Y. J. Hao, G. Q. Jin, X. Y. Guo, and K. N. Tu, Nanotechnology 19, 215602 (2008). https://doi.org/10.1088/0957-4484/19/21/215602