Relationship between Physicochemical Properties, Heavy Metal Contents and Magnetic Susceptibility of Soils

토양의 물리화학적 특성, 중금속 함량, 대자율 간의 상호관계 연구

  • Chon, Chul-Min (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Park, Jeong-Sik (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Jae-Gon (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Youn-Soo (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources)
  • 전칠민 (한국지질자원연구원 지구환경연구본부) ;
  • 박정식 (한국지질자원연구원 지구환경연구본부) ;
  • 김재곤 (한국지질자원연구원 지구환경연구본부) ;
  • 이윤수 (한국지질자원연구원 지구환경연구본부)
  • Received : 2010.10.05
  • Accepted : 2010.12.08
  • Published : 2010.12.30

Abstract

This paper deals with magnetic susceptibility, mineralogy, soil properties (pH, EC, CEC, loss on ignition), iron and manganese oxides, the content and partitioning of heavy metals (As, Cd, Cr, Cu, Ni, Pb, Zn), and their mutual relationship in the soil samples of an unpolluted, abandoned mine area, and industrial complex area. The various minerals derived from weathered bedrock were identified by X-ray diffraction in the unpolluted soil samples, except for the magnetic minerals. XRD analysis also revealed the existence of hematite and magnetite related to mine tailings and waste rocks in the abandoned mine area samples. The industrial complex area samples had carbonate minerals, such as calcite and dolomite, that might be due to anthropogenic deposition. The sum of the reducible, oxidizable, and residual fractions was over 80% for the abandoned mine area samples and over 50% for the industrial complex area samples using the sequential extraction method. The industrial complex area samples had a relatively high carbonate fraction that was associated with carbonate minerals. The content of aqua regia-extractable Fe, Mn, As, and Zn had a high positive correlation with the content of the dithionite-citrate-bicarbonate (DCB)-extractable method related to Fe/Mn oxide phases. The 54% and 58% of aqua regia-extractable Fe and As content, respectively, acted together with the concentrations of the DCB-extractable phases. Magnetic susceptibility values of total samples ranged from 0.005 to $2.131{\times}10^{-6}m^3kg^{-1}$. The samples including iron oxide minerals, such as hematite and magnetite, had a high magnetic susceptibility. The magnetic susceptibility showed a significant correlation with the heavy metals, Cd (r=0.544, p<0.05), Cr (r=0.714, p<0.01), Ni (r=0.645, p<0.05), Pb (r=0.703, p<0.01), and Zn (r=0.496, p<0.01), as well as Fe (r=0.608, p<0.01) and Mn (r=0.615, p<0.01). The aqua regia-extractable Fe and Mn content had a significant positive correlation with Cd, Cr, Cu, Ni, and Zn. However, the DCB-extractable Fe and Mn content had a significant positive correlation with As and Ni, indicating that the heavy metals were associated with Fe and Mn oxide minerals.

비오염토양, 폐광산 주변토양, 산업단지 주변토양을 채취하여 X-선 회절분석, pH, 전기전도도, 양이온교환능력, 작열감량, 산화철 산화망간 함량, 중금속 함량 및 중금속 존재형태와 토양대자율의 상관관계를 파악하였다. 시료의 X-선회절분석 정량분석결과 비오염지역 토양에서는 모암에 따라 다양한 광물이 분포하고 있지만, 적철석과 자철석은 거의 관찰되지 않았다. 폐광산 주변토양은 폐광석, 광물찌꺼기 등의 영향으로 적철석이 많이 확인되었고, 일부 시료에서는 자철석도 존재하였다. 산업단지 주변시료에서는 방해석과 철백운석 등의 탄산염 광물들이 대부분의 시료에서 확인되었다. 중금속의 존재형태를 파악하기 위한 연속추출 실험 결과, 폐광산 주변지역 토양시료에서 철, 망간, 중금속 원소들은 reducible, oxidizable, residual 단계별 추출 형태로 80% 이상, 산업단지 주변시료에서는 50% 이상 존재하였다. 산업단지 주변시료의 경우, 탄산염 광물의 영향으로 carbonate 형태가 높게 나타났다. 왕수로 추출된 철, 망간, 비소, 아연 함량은 산화철/산화망간 형태를 지시하는 dithionite-citrate-bicarbonate (DCB) 용출 함량과 매우 밀접한 정의 상관관계를 보여주었다. 철과 비소는 각각 왕수추출함량의 54%, 58%가 산화철/산화망간 형태과 함께 거동하는 것으로 나타났다. 대자율은 $0.005{\sim}2.131{\times}10^{-6}m^3kg^{-1}$의 범위로서, 시료 내에 적철석, 자철석 등 산화철 광물이 존재할 경우 대자율이 높게 측정되었다. 토양 내 중금속 함량과 대자율의 상관관계를 살펴본 결과 철 (r=0.608, p<0.01), 망간(r=0.615, p<0.01)과 유의한 정의 상관관계를 보였으며, 카드뮴(r=0.544, p<0.05), 크롬(r=0.714, p<0.01), 니켈(r=0.645, p<0.05), 납(r=0.703, p<0.01), 아연(r=0.496, p<0.01) 등의 중금속 원소와도 유의한 정의 상관관계를 보였다. 철, 망간 및 중금속원소들 간의 상관관계를 살펴본 결과, 왕수로 용출된 철, 망간 함량과 카드뮴, 크롬, 구리, 니켈, 아연 등의 중금속 함량이 정의 상관관계를 보이고 있다. 또한 산화철 및 산화망간 함량은 비소 및 니켈 함량과 밀접한 상관성이 있는 것으로 나타났다. 이는 비소와 니켈은 산화철 산화망간에 흡착되어 함께 거동함을 암시한다.

Keywords

References

  1. 김계훈 외 13인 (2006) 토양학. 향문사, 서울, 471p.
  2. 안주성, 김주용, 전철민, 문희수 (2003) 풍화광미내 고상 비소의 광물학적 화학적 특성 및 용출 가능성 평가. 자원환경지질, 36, 27-38.
  3. 안주성, 전철민, 김구영, 고경석, 박기화 (2006) 제주도 일부 화산회토양의 지화학적 특성 및 중금속원소 분포. 한국지구시스템공학회지, 43, 602-614.
  4. 이윤수, 도성재, 박용희, 서광수, 김주용 (2001) 한반도 서 부의 역사시대의 유적지로부터 구한 고고지자기 연구 : 한반도 시험적 고영년변화 곡선에의 적용. 지질학회지, 37, 115-132.
  5. 이평구, 김성환, 소칠섭 (2001) 서울시 우수관퇴적물의 중 금속 오염평가 및 연속추출방법을 이용한 중금속 유동 도 평가. 지질학회지, 37, 629-652.
  6. 정명채 (1994) 토양중의 중금속 연속추출방법과 사례연구. 자원환경지질, 27, 469-477.
  7. 홍세선 (2004) 국내 중생대 화강암의 대자율 특성과 화학 조성. 한국암석학회지, 13, 16-33.
  8. 환경부 (2002) 토양오염정밀조사보고서. 환경부.
  9. Ahn, J.S., Kim, J.-H., Kim, J.G., Song, Y., and Moon, H.-S. (2003) Laboratory investigation of the geochemical behavior of metals in paddy soils contaminated with mine tailings. Water, Air, And Soil pollution, 150, 23-42. https://doi.org/10.1023/A:1026137732763
  10. Allan, J.E.M., Coey, J.M.D., Resende, M., and Fabris, J.D. (1988) Magnetic properties of iron-rich oxisols. Phys. Chem. Minerals, 15, 470-475. https://doi.org/10.1007/BF00311127
  11. Bityukova, L., Scholger, R., and Birke, M. (1999) Magnetic susceptibility as indicator of environmental pollution of soils in Tallin. Phys. Chem. Earth, 24, 829-835. https://doi.org/10.1016/S1464-1895(99)00122-2
  12. Chan, L.S., Ng, S.L., Davis, A.M., Yim, W.W.S., and Yeung, C.H. (2001) Magnetic properties and Heavymetal Contents of contaminated seabed sediments of Penny's Bay, Hong Kong. Environmental Geology, 42, 857-870.
  13. Chan, L.S., Yeong, C.H., and Yim, W.W.S. (1997) Correlation between magnetic susceptibility and distribution of heavy metals in contaminaed sea-floor sediments of Hong Kong Harbour. Environmental Geology, 36, 77-86.
  14. Dearing, J.A. (1999) Environmental Magnetic Susceptibility : Using the Bartington MS2 System. Chi Publishing, Kenilworth, U.K., 54p.
  15. Dearing, J.A., Dann, R.J.L., Lees, J.A., Loveland, J., and Maher, B.A. (1996) Frequency-dependent susceptibility measurements of environmental materials. Geophys. J. Int, 124, 228-240. https://doi.org/10.1111/j.1365-246X.1996.tb06366.x
  16. Dold, B. (2003) Speciation of the most soluble phases in a sequential extraction procedure adapted for geochemical studies of copper sulfide mine waste. Journal of Geochemical Exploration, 80, 55-68. https://doi.org/10.1016/S0375-6742(03)00182-1
  17. Hanesch, M. and Scholger, R. (2002) Mapping of heavy metal loadings in soils by means of magnetic susceptibility measurements. Environmental Geology, 42, 857- 870. https://doi.org/10.1007/s00254-002-0604-1
  18. Heller, F., Strzyszcz, Z., and Magiera, T. (1998) Magnetic record of industrial pollution on forest soils of upper silesia (Poland). J. Geophys. Res., 103, 17767-17774. https://doi.org/10.1029/98JB01667
  19. Hoffmann, V., Knab, M., and Appel, E. (1999) Magnetic susceptibility mapping of roadside pollution. Journal of Geochemical Exploration, 66, 313-326. https://doi.org/10.1016/S0375-6742(99)00014-X
  20. Hunt, C.P., Moskowitz, B.M., and Banerjee, S.K. (1995) Magnetic properties of rocks and minerals. A hand book of physical constants AGU Reference Shelf 3, 189-204.
  21. Jackson, M.L. (1956) Soil Chemical Analysis - Advanced Course. Pub. by the author, Dept. Soils, Univ. Wisconsin, Madison, WI, USA.
  22. Lee, B.D., Sears, S.K., Graham, R.C., Amrhein, C., and Vali, H. (2003) Secondary mineral genesis from chlorite and serpentine in an ultramafic soil toposequence. Soil Sci. Soc. Am. J., 67, 1309-1317. https://doi.org/10.2136/sssaj2003.1309
  23. Lu, S.G., Xue, Q.F., Zhu, L., and Yu, J.Y. (2007a) Mineral magnetic properties of a weathering sequence of soils derived from basalt in Eastern China. Catena, 73, 23-33.
  24. Lu, S.G., Bai, S.Q., and Xue, Q.F. (2007b) Magnetic properties as indicators of heavy metals pollution in urban topsoils : a case study from the city of Luoyang, China. Geophys. J. Int., 171, 568-580. https://doi.org/10.1111/j.1365-246X.2007.03545.x
  25. Magiera, T., Lis, J., Nawrocki, J., and Strzyszcz, Z. (2002) Magnetic Susceptibility of Soils in Poland. PGI, Warszawa.
  26. Magiera, T., Strzyszcz, Z., Kapicka, A., and Petrovsky, E. (2006) Discrimination of lithogenic and anthropogenic influences on topsoil magnetic susceptibility in Central Europe. Geoderma, 130, 299-311. https://doi.org/10.1016/j.geoderma.2005.02.002
  27. Mehra O.P. and Jackson, M.L. (1960) Iron oxide removal from soils and clays by a dithionite-citrate system buffered with bicarbonate, Clays Clay Miner., 7, 317-327.
  28. Nriagu, J.O. and Paeyna, J.M. (1988) Quantitative Assessment of Worldwide Contamination of Air, Water and Soils by Trace Metals. Nature, 333, 134-139. https://doi.org/10.1038/333134a0
  29. Petrovsky, E., Kapicka, A., Jordanova, N., and Boruvka, L. (2001) Magnetic properites of alluvial soils contaminated with lead, zinc and cadmium. Journal of Applied Geophysics, 48, 127-136. https://doi.org/10.1016/S0926-9851(01)00085-4
  30. Petrovsky, E., Kapicka, A., Jordanova, N., Knab, M., and Hoffmann, V. (1998) Low-field magnetic susceptibility: a proxy method of estimating increased pollution of different environmental systems. Environmental Geology, 39, 312-318.
  31. Schmidt, A., Yarnold, R., Hill, M., and Ashmore, M. (2005) Magnetic susceptibility as proxy for heavy metal pollution: a site study. Journal of Geochemical Exploration, 85, 109-117. https://doi.org/10.1016/j.gexplo.2004.12.001
  32. Spiteri, C., Kalinski V., Rosler W., Hoffmann V., Appel E., and MAGPROX team (2005) Magnetic screening of a pollution hotspot in the Lausitz area, Eastern Germany: correlation analysis between magnetic proxies and heavy metal contamination in soils. Environ. Geol., 49, 1-9.3. https://doi.org/10.1007/s00254-005-1271-9
  33. Strzyszcz, Z. and Magiera, T. (1998) Magnetic susceptibility and Heavy Metals Contamination in soils of southern Poland. Phys. Chem. Earth, 23, 1127-1131. https://doi.org/10.1016/S0079-1946(98)00140-2
  34. Strzyszcz, Z., Magiera, T., and Bzowski, Z. (1994) Magnetic susceptibility as an indicator of soils contamination in some regions of poland. Soil Sci. Am, 85-93 (Suppl. XLIV).
  35. Svoboda, J. (2004) Magnetic Techniques for the Treatment of Materials. Springer Science, New York, 642p.
  36. Tessier, A., Campbell, P.G.C, and Bisson, M. (1979) Sequential extraction procedure for the speciation of particulate trace metal. Anal. Chem., 51, 884-850. https://doi.org/10.1021/ac50043a025
  37. Thompson, R. and Oldfield, F. (1986) Environmental Magnetism. Allen and Unwin, London, 227p.
  38. Wiriyakitnateekul, W., Suddhirprakarn, A., Kheoruneromne, I., Smirk, M.N., and Gilkes, R.J. (2007) Iron oxides in tropical soils on various parent materials. Clay Minerals, 42, 437-451. https://doi.org/10.1180/claymin.2007.042.4.02