• 제목/요약/키워드: differential inequality

검색결과 116건 처리시간 0.021초

ON INEQUALITIES OF GRONWALL TYPE

  • Choi, Sung Kyu;Kang, Bowon;Koo, Namjip
    • 충청수학회지
    • /
    • 제20권4호
    • /
    • pp.561-568
    • /
    • 2007
  • In this paper, we improve the results of [9] and give an application to boundedness of the solutions of nonlinear integro-differential equations.

  • PDF

OSCILLATIONS OF CERTAIN NONLINEAR DELAY PARABOLIC BOUNDARY VALUE PROBLEMS

  • Zhang, Liqin;Fu, Xilin
    • Journal of applied mathematics & informatics
    • /
    • 제8권1호
    • /
    • pp.137-149
    • /
    • 2001
  • In this paper we consider some nonlinear parabolic partial differential equations with distributed deviating arguments and establish sufficient conditions for the oscillation of some boundary value problems.

LOWER ORDER EIGENVALUES FOR THE BI-DRIFTING LAPLACIAN ON THE GAUSSIAN SHRINKING SOLITON

  • Zeng, Lingzhong
    • 대한수학회지
    • /
    • 제57권6호
    • /
    • pp.1471-1484
    • /
    • 2020
  • It may very well be difficult to prove an eigenvalue inequality of Payne-Pólya-Weinberger type for the bi-drifting Laplacian on the bounded domain of the general complete metric measure spaces. Even though we suppose that the differential operator is bi-harmonic on the standard Euclidean sphere, this problem still remains open. However, under certain condition, a general inequality for the eigenvalues of bi-drifting Laplacian is established in this paper, which enables us to prove an eigenvalue inequality of Ashbaugh-Cheng-Ichikawa-Mametsuka type (which is also called an eigenvalue inequality of Payne-Pólya-Weinberger type) for the eigenvalues with lower order of bi-drifting Laplacian on the Gaussian shrinking soliton.

BOUNDED OSCILLATION FOR SECOND-ORDER NONLINEAR DELAY DIFFERENTIAL EQUATIONS

  • Song, Xia;Zhang, Quanxin
    • Journal of applied mathematics & informatics
    • /
    • 제32권3_4호
    • /
    • pp.447-454
    • /
    • 2014
  • Two necessary and sufficient conditions for the oscillation of the bounded solutions of the second-order nonlinear delay differential equation $$(a(t)x^{\prime}(t))^{\prime}+q(t)f(x[{\tau}(t)])=0$$ are obtained by constructing the sequence of functions and using inequality technique.

뉴트럴 미분방정식의 새로운 안정성 판별법 (A New Stability Criterion of a Class of Neutral Differential Equations)

  • 권오민;박주현
    • 전기학회논문지
    • /
    • 제56권11호
    • /
    • pp.2023-2026
    • /
    • 2007
  • In this letter, the problem for a class of neutral differential equation is considered. Based on the Lyapunov method, a stability criterion, which is delay-dependent on both ${\tau}\;and\;{\sigma}$, is derived in terms of linear matrix inequality (LMI). Two numerical examples are carried out to support the effectiveness of the proposed method.

ULAM STABILITIES FOR IMPULSIVE INTEGRO-DIFFERENTIAL EQUATIONS

  • Sandhyatai D. Kadam;Radhika Menon;R. S. Jain;B. Surendranath Reddy
    • Nonlinear Functional Analysis and Applications
    • /
    • 제29권1호
    • /
    • pp.197-208
    • /
    • 2024
  • In the present paper, we establish Ulam-Hyres and Ulam-Hyers-Rassias stabilities for nonlinear impulsive integro-differential equations with non-local condition in Banach space. The generalization of Grownwall type inequality is used to obtain our results.