• 제목/요약/키워드: differential force

검색결과 426건 처리시간 0.026초

유입 공기의 배출 성능 개선방안에 관한 연구 (A Study on the Performance Improvement Plan of Inflowing Air Emission)

  • 이혜영
    • 한국재난정보학회 논문집
    • /
    • 제18권2호
    • /
    • pp.241-251
    • /
    • 2022
  • 연구목적: 고층 건물 화재시 제연구역이 효과적으로 보호되지 않으면 수직피난경로에 연기나 화염이 유입되어 대피가 어려워진다. 국가화재안전기준에서는 제연구역에 차압 및 방연풍속을 공급하여 능동적으로 연기 유입을 억제하고, 제연구역으로부터 옥내로 유입되는 공기는 옥외로 배출되도록 하고 있다. 본 연구는 유입 공기의 배출로 인한 문제점을 확인하고 성능개선 방안에 대하여 알아보고자 하였다. 연구방법: CONTAM 프로그램을 사용하여 기본조건과 변경조건으로 시뮬레이션을 수행하였다. 연구결과: 밀폐된 복도에서 유입 공기가 배출되면 제연구역에서 과압이 발생하여 개방력을 초과하였고 유입공기가 배출되지 않는 층 에서는 방연풍속이 미달하였다. 결론: "차압 배출댐퍼" 적용, 배출댐퍼 2개층 동시 개방, 복도와 옥외 사이 자동식 창문 설치로 유입공기의 배출 성능이 개선되었다.

삼각 퍼지 소속 함수를 외력으로 가진 사랑 동력학에서의 비선형 해석 (Nonlinear Analysis in Love Dynamics with Triangular Membership Function as External Force)

  • 배영철
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권1호
    • /
    • pp.217-224
    • /
    • 2017
  • 최근에 카오스 이론을 사회과학의 한 분야의 사랑 모델에 적용하고자 하는 노력을 지속하고 있다. 로미오와 줄리엣으로 표현하는 미분 방정식에서 카오스 거동을 만들기 위해서 외력을 인가한다. 그러나 이 외력은 사람의 감정을 정확하게 표현하지 못하는 단점을 가진다. 본 논문에서는 이러한 단점을 해결하기 위하여, 로미오와 줄리엣의 사랑모델에서 외력을 사람의 말이나 행동에 가장 유사한 형태로 제공하기 위해 퍼지 소속 함수를 도입하고 이를 삼각 퍼지 소속 함수를 제시하였다. 또한 제시된 퍼지 소속 함수를 가진 로미오와 줄리엣의 사랑모델에서 카오스 거동을 확인하기 위하여, 시계열과 위상공간을 이용하였으며 이를 통하여 카오스 거동의 존재를 확인한다.

Analysis of slope stability based on evaluation of force balance

  • Razdolsky, A.G.;Yankelevsky, D.Z.;Karinski, Y.S.
    • Structural Engineering and Mechanics
    • /
    • 제20권3호
    • /
    • pp.313-334
    • /
    • 2005
  • The paper presents a new approach for the analysis of slope stability that is based on the numerical solution of a differential equation, which describes the thrust force distribution within the potential sliding mass. It is based on the evaluation of the thrust force value at the endpoint of the slip line. A coupled approximation of the slip and thrust lines is applied. The model is based on subdivision of the sliding mass into slices that are normal to the slip line and the equilibrium differential equation is obtained as the slice width approaches zero. Opposed to common iterative limit equilibrium procedures the present method is straightforward and gives an estimate of slope stability at the value of the safety factor prescribed in advance by standard requirements. Considering the location of the thrust line within the soil mass above the trial slip line eliminates the possible development of a tensile thrust force in the stable and critical states of the slope. The location of the upper boundary point of the thrust line is determined by the equilibrium of the upper triangular slice. The method can be applied to any smooth shape of a slip line, i.e., to a slip line without break points. An approximation of the slip and thrust lines by quadratic parabolas is used in the numerical examples for a series of slopes.

Direct kinematic method for exactly constructing influence lines of forces of statically indeterminate structures

  • Yang, Dixiong;Chen, Guohai;Du, Zongliang
    • Structural Engineering and Mechanics
    • /
    • 제54권4호
    • /
    • pp.793-807
    • /
    • 2015
  • Constructing the influence lines of forces of statically indeterminate structures is a traditional issue in structural engineering and mechanics. However, the existing kinematic method for establishing these force influence lines is an indirect or mixed approach by combining the force method with the theorem of reciprocal displacements, which is yet inconsistent with the kinematic method for statically determinate structure. This paper proposes the direct kinematic method in conjunction with the load-displacement differential relation for exactly constructing influence lines of reaction and internal forces of indeterminate structures. Firstly, through applying the principle of virtual displacement, the formula for influence lines of reaction and internal forces of indeterminate structure via direct kinematic method is derived based on the released structure. Then, a computational approach with a clear concept and unified procedure as well as wide applicability based on the load-displacement differential relation of beam is suggested to achieve conveniently the closed-form expression of force influence lines, and exactly draw them. Finally, three representative examples for constructing force influence lines of statically indeterminate beams and frame illustrate the superiority of the proposed method.

Buckling analysis of partially embedded pile in elastic soil using differential transform method

  • Catal, Seval;Catal, Hikmet Huseyin
    • Structural Engineering and Mechanics
    • /
    • 제24권2호
    • /
    • pp.247-268
    • /
    • 2006
  • The parts of pile, above the soil and embedded in the soil are called the first region and second region, respectively. The forth order differential equations of both region for critical buckling load of partially embedded pile with shear deformation are obtained using the small-displacement theory and Winkler hypothesis. It is assumed that the behavior of material of the pile is linear-elastic and that axial force along the pile length and modulus of subgrade reaction for the second region to be constant. Shear effect is included in the differential equations by considering shear deformation in the second derivative of the elastic curve function. Critical buckling loads of the pile are calculated for by differential transform method (DTM) and analytical method, results are given in tables and variation of critical buckling loads corresponding to relative stiffness of the pile are presented in graphs.

DQM을 이용한 탄성지반 위에 놓인 보-기둥의 자유진동 해석 (Free Vibration Analysis of Beam-Columns on Elastic Foundation Using Differential Quadrature Method)

  • 최규문;김무영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.1005-1009
    • /
    • 2001
  • This paper deals with the free vibration analysis of beam-columns on elastic foundation using Differential Quadrature Method. Based on the dynamic equilibrium equation of a beam element acting the stress resultants and the inertia force, the governing differential equation is derived for the in-plane free vibration of such beam-columns. For calculating the natural frequencies, this equation is solved by the Differential Quadrature Method. It is expected that the results obtained herein can be used in application of Differential Quadrature Method to the field of civil engineering and practically in the structural engineering, the foundation engineering and the vibration control fields.

  • PDF

Crack identification in post-buckled beam-type structures

  • Moradi, Shapour;Moghadam, Peyman Jamshidi
    • Smart Structures and Systems
    • /
    • 제15권5호
    • /
    • pp.1233-1252
    • /
    • 2015
  • This study investigates the problem of crack detection in post-buckled beam-type structures. The beam under the axial compressive force has a crack, assumed to be open and through the width. The crack, which is modeled by a massless rotational spring, divides the beam into two segments. The crack detection is considered as an optimization problem, and the weighted sum of the squared errors between the measured and computed natural frequencies is minimized by the bees algorithm. To find the natural frequencies, the governing nonlinear equations of motion for the post-buckled state are first derived. The solution of the nonlinear differential equations of the two segments consists of static and dynamic parts. The differential quadrature method along with an arc length strategy is used to solve the static part, while the same method is utilized for the solution of the linearized dynamic part and the extraction of the natural frequencies of the cracked beam. The investigation includes several numerical as well as experimental case studies on the post-buckled simply supported and clamped-clamped beams having open cracks. The results show that several parameters such as the amount of applied compressive force and boundary conditions influences the outcome of the crack detection scheme. The identification results also show that the crack position and depth can be predicted well by the presented method.

경사 종동력을 받는 티모센코 보의 안정성에 미치는 크랙의 영향 (Effects of Crack on Stability of Timoshenko Beams Subjected to Subtangential Follower Force)

  • 손인수;윤한익
    • 한국소음진동공학회논문집
    • /
    • 제18권12호
    • /
    • pp.1327-1334
    • /
    • 2008
  • In this paper, the purpose is to investigate the stability of cracked Timoshenko cantilever beams subjected to subtangential follower force. In addition, an analysis of the instability(critical follower force of flutter and divergence) of a cracked beam as slenderness ratio and subtangential coefficient is investigated. The governing differential equations of a Timoshenko beam subjected to an end tangential follower force is derived via Hamilton's principle. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. The results of this study will contribute to the safety test and stability estimation of structures of a cracked beam subjected to subtangential follower force.

진화 알고리즘기반의 SI기법을 이용한 외부 프리스트레싱으로 보강된 텐던의 장력 추정 (Estimation of External Prestressing Tendon Tension Using Sl Technique Based on Evolutionary Algorithm)

  • 장한택;노명현;이상열;박대효
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.156-159
    • /
    • 2008
  • This paper introduces a remained tensile force estimation method using SI technique based on evolutionary algorithm for externally prestressed tendon. This paper applies the differential evolutionary scheme to SI technique. A virtual model test using ABAQUS 3 dimensional frame model has been made for this work The virtual model is added to the tensile force(28.5kN). Two set of frequencies are extracted respectively from the virtual test and the self-coding FEM 2 dimension model. The estimating tendon tension for the FEM model is 28.31kN. It is that the error in the tendon tension is 1% through the differential evolutionary algorithm. The errors between virtual model and the self-coding FEM model are assumed as the model error.

  • PDF

변단면 기둥의 자유진동 및 최소임계하중 해석 (Free Vibrations and First Critical Loads of Tapered Columns)

  • 이병구;오상진;모정만;김헌상
    • 소음진동
    • /
    • 제2권3호
    • /
    • pp.203-211
    • /
    • 1992
  • The main purpose of this paper is to present both the natural frequencies and the first critical loads of tapered columns. The ordinary differential equation governing the free vibration for tapered columns under compressive axial force is derived. Three kinds of cross sectional shape are considered in the governing equation. The Runge-Kutta method and determinant search method are used to perform the integration of the differential equation and to determine the natural frequencies, respectively. Additionally, the bisection method is used to determine the critical loads. In numerical examples, the effects of compressive axial force on the natural frequencies of tapered columns are investigated varying the end conditions. The first critical loads of tapered columns are determined on the basis of dynamic concepts. The first critical loads of tapered columns are determined on the basis of dynamic concept. The effects of cross sectional shapes are shown and some typical mode shapes are also presented.

  • PDF