• 제목/요약/키워드: differential drive

검색결과 150건 처리시간 0.025초

BiCMOS를 사용한 전압 제어 발진기의 설계 (Design of Voltage Controlled Oscillator Using the BiCMOS)

  • 이용희;유기한;이천희
    • 대한전자공학회논문지
    • /
    • 제27권11호
    • /
    • pp.83-91
    • /
    • 1990
  • 전압제어 발진기(VCO:coltage controlled oscillator)는 FM 신호 변조, 주파수 안정기와 디지탈 클럭 재생과 같은 부분의 적용에 필수적인 기본회로이다. 본 논문에서는 BiCMOS 회로를 이용한 차동 증폭기를 사용하여 OTA(operational transconductance amplifier)회로와 OP amp를 설계하고 이를 토대로 하여 VCO 회로를 설계하였다. 그리고 이 VCO는 OTA와 전압 제어 적분기, 그리고 슈미트 트리거 회로로 구성이 되어 있다. 종래에는 CMOS를 사용하여 VCO를 설계하였지만 여기서는 구동능력이 좋은 BiCMOS를 사용하여 VCO를 설계하였다. 이 회로를 SPICE로 시뮬레이션 한 결과 출력 주파수는 105KHz에서 141KHz이며 변화 감도는 15KHz였다.

  • PDF

Rail-to-rail 출력을 갖는 1[V] CMOS Operational Amplifiler 설계 및 IC 화에 관한 연구 (A Study on The IC Design of 1[V] CMOS Operational Amplifier with Rail-to-rail Output Ranges)

  • 전동환;손상희
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권4호
    • /
    • pp.461-466
    • /
    • 1999
  • A CMOS op amp with rail-to-rail input and output ranges is designed in a one-volt supply. The output stage of the op amp is used in a common source amplifier that operates in sub-threshold region to design a low voltage op amp with rail-to-tail output range. To drive heavy resistor and capacitor loads with rail-to-rail output ranges, a common source amplifier which has a low output resistance is utilized. A bulk-driven differential pair and a bulk-driven folded cascode amplifier are used in the designed op amp to increase input range and achieve 1 V operation. Post layout simulation results show that low frequency gain is about 58 ㏈ and gain bandwidth I MHz. The designed op amp has been fabricated in a 0.8${\mu}{\textrm}{m}$ standard CMOS process. The measured results show that this op amp provides rail-to-rail output range, 56㏈ dc gain with 1 MΩ load and has 0.4 MHz gain-bandwidth with 130 ㎊ and 1 kΩ loads.

  • PDF

An Adaptive Fuzzy Current Controller with Neural Network For Field-Oriented Controller Induction Machine

  • Lee, Kyu-Chan;Lee, Hahk-Sung;Cho, Kyu-Bock;Kim, Sung-Woo
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 A
    • /
    • pp.227-230
    • /
    • 1993
  • Recently, the development of novel control methodology enables us to improve the performance of AC-machine drives by using pulse width modulation (PWM) technique. Usually, the dynamic characteristic of induction motor (IM) has been represented by the 5-th order nonlinear differential equation. This dynamics, however, can be reduced to 3-rd order dynamics by applying direct control of IM input current. This methodology concludes that it is much easier to control IM by means of the field-oriented methods employing the current controller. Therefore a precise current control is crucial to achieve a high control performance both in dynamic and steady state operations. This paper presents an adaptive fuzzy current controller with artificial neural network (ANN) for field-oriented controlled IM. This new control structure is able to adaptively minimize a current ripple while maintaining constant switching frequency. Especially the proposed controller employs neuro-computing philosophy as well as adaptive learning pattern recognizing principles with respect to variations of the system parameters. The proposed approach is applied to the IM drive system, and its performance is tested through various simulations. Simulation results show that the proposed system, compared among several known classical methods, has a superb performance.

  • PDF

확장 가이드 서클 방법을 이용한 비홀로노믹 이동로봇의 실시간 장애물 회피 (Real-time Obstacle Avoidance of Non-holonomic Mobile Robots Using Expanded Guide Circle Method)

  • 심영보;김곤우
    • 로봇학회논문지
    • /
    • 제12권1호
    • /
    • pp.86-93
    • /
    • 2017
  • The Expanded Guide Circle (EGC) method has been originally proposed as the guidance navigation method for improving the efficiency of the remote operation using the sensory information. The previous algorithm is, however, concerned only for the omni-directional mobile robot, so it needs to suggest a suitable one for a mobile robot with non-holonomic constraints. The ego-kinematic transform is a method to map points of $R^2$ into the ego-kinematic space which implicitly represents non-holonomic constraints for admissible paths. Thus, robots with non-holonomic constraints in the ego-kinematic space can be considered as "free-flying object". In this paper, we propose an effective obstacle avoidance method for mobile robots with non-holonomic constraints by applying EGC method in the ego-kinematic space using the ego-kinematic transformation. This proposed method shows that it works better for non-holonomic mobile robots such as differential-drive robot than the original one. The simulation results show its effectiveness of performance.

개선된 속도 추정 알고리즘을 이용한 유도전동기의 속도 센서리스 벡터 제어 (Speed Sensorless Vector Control of Induction Machine Using an Improves Speed Estimation Algorithm)

  • 정인화;신명호;현동석
    • 전력전자학회논문지
    • /
    • 제2권4호
    • /
    • pp.36-44
    • /
    • 1997
  • 본 논문에서는 유도전동기의 속도 센서리스 벡터 제어에서의 운전특성 개선을 위하여 최근에 제시된 상태 방정식을 이용한 속도 추정 알고리즘을 살펴보고 이 방식이 갖고 있는 문제점들을 해결할 수 있는 새로운 추정 방법을 제안한다. 또한 폐루프 적분 방식의 고정자 자속 추정 알고리즘을 도입하여 고정자 자속 추정의 정확도를 높였다. 특히, 모든 미분항과 적분항들을 등가의 표현식을 통해 나타내어 실제 구현에 있어서 빠른 응답 특성과 잡음에 대한 안정성을 높였다. 시뮬레이션과 실험을 통하여 본 논문에서 제안한 속도 추정기의 타당성을 입증하였다.

  • PDF

회전형 초음파모터의 소형 위상차 제어기 개발 (Development of Compact Phase-difference Controller for an Ultrasonic Rotary Motor)

  • 이동창;이명훈;이의학;이선표
    • 한국정밀공학회지
    • /
    • 제23권8호
    • /
    • pp.64-71
    • /
    • 2006
  • In this paper, a uniform speed controller for an ultrasonic rotary motor is developed using the phase-difference method. The phase difference method uses traveling waves to drive the ultrasonic motor. The traveling waves are obtained by adding two standing waves that have a different phase to each other. A compact phase-difference driver system is designed and integrated by combining VCO(Voltage Controlled Oscillator) and phase shifter. Theoretically the relationship between the phase difference in time and the rotational speed of the ultrasonic motor is sine function, which is verified by experiments. Then a series of experiments under various loading conditions are conducted to characterize the motor's performance that is the relationship between the speed and torque. Proportional-integral control is adopted for the uniform speed control. The proportional control unit calculates the compensating phase-difference using the rotating speed which is measured by an encoder and fed back. Integral control is used to eliminate steady-state errors. Differential control for reducing overshoot is not used since the response of ultrasonic motor is prompt due to its low inertia and friction-driving characteristics. The developed controller demonstrates reasonable performance overcoming disturbing torque and the changes in material properties due to continuous usage.

배관 압력을 이용한 서보밸브 정적 특성에 관한 실험적 연구 (An Experimental Study on Static Characteristics of Servo Valves using Transmission Line Pressures)

  • 김성동;주별진;윤소남
    • 드라이브 ㆍ 컨트롤
    • /
    • 제13권2호
    • /
    • pp.42-50
    • /
    • 2016
  • The conventional technique to measure the hysteresis and the null of servo valves is defined in ISO 10770-1 and based on load flow signal of the servo valve. A new technique based on the transmission line pressures is suggested in this study. The new measuring method was verified through a series of experiments. No hysteresis was observed between the spool displacement and the transmission line pressures, load pressure or each chamber pressure. Some hysteresis was observed between valve input and pressures, which was found to be the same as those of load flow and spool displacement for the valve input. By using the chamber pressures, the hysteresis and the null are easier to measure than the load pressure or differential pressure between those two chamber pressures because the chamber pressures showed sharp edges.

Real Exchange Rate Misalignment in Pakistan: An Application of Regime Switching Model

  • FIAZ, Asma;KHURSHID, Nabila;SATTI, Ahsan;MALIK, Muhammad Shuaib;MALIK, Wasim shahid
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제8권12호
    • /
    • pp.63-73
    • /
    • 2021
  • This study investigates the key determinants of exchange rate (RER) misalignment for the period 1991 to 2020. The BEER technique has been used to estimate the degree of the equilibrium exchange rate. To explore the actual exchange rate misalignment and to assess the behavior of variables that are different in different regimes of undervaluation and overvaluation, the nonlinear technique of Markov regime-switching (MSM) was applied. The mean and variance of each regime are highly significant and show that undervaluation episodes have a low mean (116.139) and more volatility (1.229) while overvaluation episodes have a high mean (126.732) with less volatility (0.871). The findings show that MSM accurately identifies exchange rate misalignment in both regimes as separate incidents of overvaluation and undervaluation. Results further depict that misalignment of the RER is affected by terms of trade, net foreign assets, interest differential, government investment, and consumption decision. Results recommend that if policymakers want to use the exchange rate as a policy tool, they must first consider the drivers of the equilibrium exchange rate. As a result, any deliberate actions to address exchange rate misalignment must focus on the underlying fundamentals that drive the exchange rate.

Compound damping cable system for vibration control of high-rise structures

  • Yu, Jianda;Feng, Zhouquan;Zhang, Xiangqi;Sun, Hongxin;Peng, Jian
    • Smart Structures and Systems
    • /
    • 제29권4호
    • /
    • pp.641-652
    • /
    • 2022
  • High-rise structures prone to large vibrations under the action of strong winds, resulting in fatigue damage of the structural components and the foundation. A novel compound damping cable system (CDCS) is proposed to suppress the excessive vibrations. CDCS uses tailored double cable system with increased tensile stiffness as the connecting device, and makes use of the relative motion between the high-rise structure and the ground to drive the damper to move back-and-forth, dissipating the vibration mechanical energy of the high-rise structure so as to decaying the excessive vibration. Firstly, a third-order differential equation for the free vibration of high-rise structure with CDCS is established, and its closed form solution is obtained by the root formulas of cubic equation (Shengjin's formulas). Secondly, the analytical solution is validated by a laboratory model experiment. Thirdly, parametric analysis is conducted to investigate how the parameters affect the vibration control performance. Finally, the dynamic responses of the high-rise structure with CDCS under harmonic and stochastic excitations are calculated and its vibration mitigation performance is further evaluated. The results show that the CDCS can provide a large equivalent additional damping ratio for the vibrating structures, thus suppressing the excessive vibration effectively. It is anticipated that the CDCS can be used as a good alternative energy dissipation system for vibration control of high-rise structures.

Computation of the Current Limiting Behavior of BSCCO-2212 High-Temperature Superconducting Tube with Shunt Coils

  • Kim, H.M.;Park, K.B.;Lee, B.W.;Oh, I.;Sim, J.;Hyun, O.B.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제8권4호
    • /
    • pp.22-25
    • /
    • 2006
  • This paper deals with the computation of the current limiting behavior of high-temperature superconducting (HTS) modules for the superconducting fault current limiter (SFCL). The SFCL module consists of a monofilar type BSCCO-2212 tube and a shunt coil made of copper or brass. The shunt coil is connected to the monofilar superconducting tube in parallel. Through analysis of the quench behavior of the monofilar component with shunt coils, it is achieved to drive an equivalent circuit equation from the experimental circuit structure. In order to analyze the quench behavior of the SFCL module, we derived a partial differential equation technique. Inductance of the monofilar component and the impedance of the shunt coil are calculated by Bio-Savart and Ohm's formula, respectively. We computed the quench behavior using the calculated values, and compared the results with experimental results for the quench characteristics of a component. The results of computation and test agreed well each other, and it was concluded that the analytic result could be applied effectively to design of the distribution-level SFCL system.