Abstract
This paper deals with the computation of the current limiting behavior of high-temperature superconducting (HTS) modules for the superconducting fault current limiter (SFCL). The SFCL module consists of a monofilar type BSCCO-2212 tube and a shunt coil made of copper or brass. The shunt coil is connected to the monofilar superconducting tube in parallel. Through analysis of the quench behavior of the monofilar component with shunt coils, it is achieved to drive an equivalent circuit equation from the experimental circuit structure. In order to analyze the quench behavior of the SFCL module, we derived a partial differential equation technique. Inductance of the monofilar component and the impedance of the shunt coil are calculated by Bio-Savart and Ohm's formula, respectively. We computed the quench behavior using the calculated values, and compared the results with experimental results for the quench characteristics of a component. The results of computation and test agreed well each other, and it was concluded that the analytic result could be applied effectively to design of the distribution-level SFCL system.