• Title/Summary/Keyword: differential distribution

Search Result 786, Processing Time 0.028 seconds

REMARKS ON A PAPER OF LEE AND LIM

  • Hamedani, G.G.;Slattery, M.C.
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.3
    • /
    • pp.475-477
    • /
    • 2014
  • Lee and Lim (2009) state three characterizations of Loamax, exponential and power function distributions, the proofs of which, are based on the solutions of certain second order non-linear differential equations. For these characterizations, they make the following statement : "Therefore there exists a unique solution of the differential equation that satisfies the given initial conditions". Although the general solution of their first differential equation is easily obtainable, they do not obtain the general solutions of the other two differential equations to ensure their claim via initial conditions. In this very short report, we present the general solutions of these equations and show that the particular solutions satisfying the initial conditions are uniquely determined to be Lomax, exponential and power function distributions respectively.

PAIRED HAYMAN CONJECTURE AND UNIQUENESS OF COMPLEX DELAY-DIFFERENTIAL POLYNOMIALS

  • Gao, Yingchun;Liu, Kai
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.1
    • /
    • pp.155-166
    • /
    • 2022
  • In this paper, the paired Hayman conjecture of different types are considered, namely, the zeros distribution of f(z)nL(g) - a(z) and g(z)nL(f) - a(z), where L(h) takes the derivatives h(k)(z) or the shift h(z+c) or the difference h(z+c)-h(z) or the delay-differential h(k)(z+c), where k is a positive integer, c is a non-zero constant and a(z) is a nonzero small function with respect to f(z) and g(z). The related uniqueness problems of complex delay-differential polynomials are also considered.

Optimal Location and Sizing of Shunt Capacitors in Distribution Systems by Considering Different Load Scenarios

  • Dideban, Mohammadhosein;Ghadimi, Noradin;Ahmadi, Mohammad Bagher;Karimi, Mohammmad
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1012-1020
    • /
    • 2013
  • In this work, Self-adaptive Differential Evolutionary (SaDE) algorithm is proposed to solve Optimal Location and Size of Capacitor (OLSC) problem in radial distribution networks. To obtain the SaDE algorithm, two improvements have been applied on control parameters of mutation and crossover operators. To expand the study, three load conditions have been considered, i.e., constant, varying and effective loads. Objective function is introduced for the load conditions. The annual cost is fitness of problem, in addition to this cost, CPU time, voltage profile, active power loss and total installed capacitor banks and their related costs have been used for comparisons. To confirm the ability of each improvements of SaDE, the improvements are studied both in separate and simultaneous conditions. To verify the effectiveness of the proposed algorithm, it is tested on IEEE 10-bus and 34-bus radial distribution networks and compared with other approaches.

THE EVOLUTION OF A SPIRAL GALAXY: THE GALAXY

  • Lee, See-Woo;Park, Byeong-Gon;Kang, Yong-Hee;Ann, Hong-Bae
    • Journal of The Korean Astronomical Society
    • /
    • v.24 no.1
    • /
    • pp.25-53
    • /
    • 1991
  • The evolution of the Galaxy is examined by the halo-disk model, using the time-dependent bimodal IMF and contraints such as cumulative metallicity distribution, differential metallicity distribution and PDMF of main sequence stars. The time scale of the Galactic halo formation is about 3Gyr during which the most of halo stars and metal abundance are formed and ${\sim}95%$ of the initial halo mass falls to the disk. The G-dwarf problem could be explained by the time-dependent bimodal IMF which is suppressed for low mass stars at the early phase (t < 1Gyr) of the disk evolution. However, the importance of this problem is much weakened by the Pagel's differential metallicity distribution which leads to less initial metal enrichment and many long-lived metal-poor stars with Z < $1/3Z_{\odot}$ The observational distribution of abundance ratios of C, N, O elements with respect to [Fe/H] could be reproduced by the halo-disk model, including the contribution of iron product by SNIs of intermediate mass stars. The initial enrichment of elements in the disk could be explained by the halo-disk model, resulting in the slight decrease and then the increase in the slopes of the [N/Fe]- and [C/Fe]-distributions with increasing [Fe/H] in the range of [Fe/H] < -1.

  • PDF

Differential cubature method for vibration analysis of embedded FG-CNT-reinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions

  • Madani, Hamid;Hosseini, Hadi;Shokravi, Maryam
    • Steel and Composite Structures
    • /
    • v.22 no.4
    • /
    • pp.889-913
    • /
    • 2016
  • Vibration analysis of embedded functionally graded (FG)-carbon nanotubes (CNT)-reinforced piezoelectric cylindrical shell subjected to uniform and non-uniform temperature distributions are presented. The structure is subjected to an applied voltage in thickness direction which operates in control of vibration behavior of system. The CNT reinforcement is either uniformly distributed or functionally graded (FG) along the thickness direction indicated with FGV, FGO and FGX. Effective properties of nano-composite structure are estimated through Mixture low. The surrounding elastic foundation is simulated with spring and shear constants. The material properties of shell and elastic medium constants are assumed temperature-dependent. The motion equations are derived using Hamilton's principle applying first order shear deformation theory (FSDT). Based on differential cubature (DC) method, the frequency of nano-composite structure is obtained for different boundary conditions. A detailed parametric study is conducted to elucidate the influences of external applied voltage, elastic medium type, temperature distribution type, boundary conditions, volume percent and distribution type of CNT are shown on the frequency of system. In addition, the mode shapes of shell for the first and second modes are presented for different boundary conditions. Numerical results indicate that applying negative voltage yields to higher frequency. In addition, FGX distribution of CNT is better than other considered cases.

Steering Control of Differential Brake System using Fuzzy Algorithm (퍼지 알고리즘을 이용한 차동 브레이크 시스템의 조향제어)

  • 윤여흥;제롬살랑선네;장봉춘;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.233-237
    • /
    • 2002
  • Vehicle Dynamics Control(VDC) has been a breakthrough and become a new terminology for the safety of a driver and improvement of vehicle handling. This paper examines the usefulness of a brake steer system (BSS), which uses differential brake forces for steering intervention in the context of VDC. In order to help the car to turn, a yaw moment can be achieved by altering the left/light and front/rear brake distribution. The steering function achieved through BSS can then be used to control lateral position in an unintended road departure system. A 8-DOF non-linear vehicle model including STI tire model will be validated using the equations of motion of the vehicle, and the non-linear vehicle dynamics. Since Fuzzy logic can consider the nonlinear effect of vehicle modeling, Fuzzy controller is designed to explore BSS feasibility, by modifying the brake distribution through the control of the yaw rate of the vehicle. The control strategies developed will be tested by simulation of a variety of situation; the possibility of VDC using BSS is verified in this paper.

  • PDF

Active Handling Control of the Differential Brake System Using Fuzzy Controller (퍼지제어기를 이용한 차동브레이크 시스템의 능동 조향제어)

  • 윤여흥;장봉춘;이성철
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.82-91
    • /
    • 2003
  • Vehicle dynamics control (VDC) has been a breakthrough and become a new terminology for the safety of a driver and improvement of vehicle handling. This paper examines the usefulness of a brake steer system (BSS), which uses differential brake forces for steering intervention in the context of VDC, In order to help the car to turn, a yaw moment can be achieved by altering the left/right and front/rear brake distribution. The steering function achieved through BSS can then be used to control lateral position in an unintended road departure system. An 8-DOF non-linear vehicle model including STI tire model will be validated using the equations of motion of the vehicle, and the non-linear vehicle dynamics. Since fuzzy logic can consider the nonlinear effect of vehicle modeling, fuzzy controller is designed to explore BSS feasibility, by modifying the brake distribution through the control of the yaw rate of the vehicle. The control strategies developed will be tested by simulation of a variety of situation; the possibility of VDC using BSS is verified in this paper.

Stress Analysis for Differential Drying Shrinkage of Concrete (콘크리트의 부등건조수축으로 인한 응력의 해석)

  • 김진근;김효범
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.4
    • /
    • pp.102-112
    • /
    • 1994
  • The drying shrinkage of concrete has a close relation to the water movement. Since the diffusion process of water in concrete is strongly dependent on the temperature and the pore humidity, the process is highly nonlinear phenomena. This study consists of two parts. The first is the development of a finite element program which is capable of simulating the rnoisture distri- ,bution in concrete, and the other is the estimation of the differential drying shrinkage and stress considering creep by using the modified elastic modulus due to inner temperature change and maturity. It is shown that the analytical results of this study are in good agreement with experlimental data in the literatures, and results calculated by BP-KX model. The internal stress caused by moisture distribution which was resulted from the diffusion process, was calculated :quantitatively. The tensile stress which occured in the drying outer zone mostly exceeded the tensile strength of concrete, and necessarily would result in crack formation.

A FLOW AND PRESSURE DISTRIBUTION OF APR+ REACTOR UNDER THE 4-PUMP RUNNING CONDITIONS WITH A BALANCED FLOW RATE

  • Euh, D.J.;Kim, K.H.;Youn, Y.J.;Bae, J.H.;Chu, I.C.;Kim, J.T.;Kang, H.S.;Choi, H.S.;Lee, S.T.;Kwon, T.S.
    • Nuclear Engineering and Technology
    • /
    • v.44 no.7
    • /
    • pp.735-744
    • /
    • 2012
  • In order to quantify the flow distribution characteristics of APR+ reactor, a test was performed on a test facility, ACOP ($\underline{A}$PR+ $\underline{C}$ore Flow & $\underline{P}$ressure Test Facility), having a length scale of 1/5 referring to the prototype plant. The major parameters are core inlet flow and outlet pressure distribution and sectional pressure drops along the major flow path inside reactor vessel. To preserve the flow characteristics of prototype plant, the test facility was designed based on a preservation of major flow path geometry. An Euler number is considered as primary dimensionless parameter, which is conserved with a 1/40.9 of Reynolds number scaling ratio. ACOP simplifies each fuel assembly into a hydraulic simulator having the same axial flow resistance and lateral cross flow characteristics. In order to supply boundary condition to estimate thermal margins of the reactor, the distribution of inlet core flow and core exit pressure were measured in each of 257 fuel assembly simulators. In total, 584 points of static pressure and differential pressures were measured with a limited number of differential pressure transmitters by developing a sequential operation system of valves. In the current study, reactor flow characteristics under the balanced four-cold leg flow conditions at each of the cold legs were quantified, which is a part of the test matrix composing the APR+ flow distribution test program. The final identification of the reactor flow distribution was obtained by ensemble averaging 15 independent test data. The details of the design of the test facility, experiment, and data analysis are included in the current paper.

ANGULAR DISTRIBUTION OF SOLUTIONS OF HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS

  • Wu, Zhaojun;Sun, Daochun
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.6
    • /
    • pp.1329-1338
    • /
    • 2007
  • In this paper, we study the location of zeros and Borel direction for the solutions of linear homogeneous differential equations $$f^{(n)}+A_{n-1}(z)f^{(n-1)}+{\cdots}+A_1(z)f#+A_0(z)f=0$$ with entire coefficients. Results are obtained concerning the rays near which the exponent of convergence of zeros of the solutions attains its Borel direction. This paper extends previous results due to S. J. Wu and other authors.