• 제목/요약/키워드: differential distribution

검색결과 789건 처리시간 0.03초

Developmental Patterns of Gal$\beta$1,3(4)GlcNAc $\alpha$2,3-Sialyltransferase (ST3Gal III) Expression in the Mouse: In Situ Hybridization Using DIG-labeled RNA Probes

  • Ji, Min-Young;Lee, Young-Choon;Kim, Kyoung-Sook;Cho, Jin-Won;Jung, Kyu-Yong;Kim, Cheorl-Ho;Choo, Young-Kug
    • Archives of Pharmacal Research
    • /
    • 제22권3호
    • /
    • pp.243-248
    • /
    • 1999
  • Sialic acids are key determinants for biological processes, such as cell-cell interaction and differentiation. Sialyltransferases contribute to the diversity in carbohydrate structure through their attachment of sialic acid in various terminal positions on glycolipid and glycoprotein (N-linked and O-linked) carbohydrate groups. Gal$\beta$ 1,3(4)GlcNAc $\alpha$2,3-sialyltransferase (ST3Gal III) is involved in the biosynthesis of $sLe^{X}$ and sLe^{a}$ known as selection ligands and tumor-associated carbohydrate structures. The appearance and differential distribution of ST3Gal III mRNA during mice embryogenesis [embryonic (E) days; E9, E11, E13, E15] were investigated by in situ hybridization with digoxigenin-labeled RNA probes coupled with alkaline phosphatase detection. On E9, all tissues were positive for ST3Gal III mRNA expression whereas ST3Gal III mRNA on E11 was not detected throughout all tissues. On E13, ST3GAl III mRNA was expressed in different manner in various tissues. In this stage, ST3Gal III mRNA was positive only in the liver, pancreas and bladder. On E15, specific signal for ST3GAl III was detected in the liver, lung and forebrain. These results indicate that ST3Gal III is differently expressed at developmental stages of mice embryo, and this may be importantly related with regulation of organogenesis in mice.

  • PDF

유동함수를 이용한 난류제트혼합유동 계산에 관한 연구 (A Simple Calculational Method by using Modified Von Mises Transformation applied to the Coaxial Turbulent Jet Mixing)

  • 최동환
    • 한국추진공학회지
    • /
    • 제9권2호
    • /
    • pp.97-104
    • /
    • 2005
  • 많은 장점에도 불구하고 유동함수를 이용한 수치해석용 격자생성 좌표변환기법의 단점은 저속영역에서의 격자간격이 고속영역에 비해 상대적으로 큼에 따라 수치적 처리에 많은 오차를 내포하고 있다는 점이다. 본 연구에서는 이러한 저속영역에서의 단점을 보완하기 위하여 격자간격을 속도크기 및 영역에 따라 적절히 조절할 수 있도록 수학적으로 변형된 압축성 유동함수를 이용한 좌표변환기법을 제안하고 가스터빈엔진에 주로 적용되는 유동모델로서 동심원상 두개 이상의 난류제트혼합유동에 대해 적용하였으며 해당 실험치, 즉 축 방향 평균속도분포, 난류운동에너지, 그리고 난류전단응력분포와 비교하여 난류운동에너지가 약간 과소평가 된 대칭축을 제외한 혼합경계층 내에서 $3.5\%$ 이내의 신뢰성을 확보하였다. 본 기법은 특히 터보팬엔진에 대한 내부흐름들의 혼합유동을 규명하거나 또는 난류전단응력에 의한 제트소음발생 및 저감방법을 도모하는데 유용하게 활용될 것으로 기대된다.

모세관 다이에서 고무 복합체의 점탄성 거동에 대한 컴퓨터 모사 (Computer Simulation of Viscoelastic Flow in a Capillary Die for Rubber Compounds)

  • 박동명;김학주;윤재룡;류민영
    • Elastomers and Composites
    • /
    • 제41권4호
    • /
    • pp.223-230
    • /
    • 2006
  • 고무복합체는 높은 점탄성 성질을 보이는데 압출성형 시 이 점탄성 성질 때문에 압출물이 팽창하게 된다. 그리고 팽윤양은 공정 조건에 따라서 변한다. 점탄성 성질에서 탄성 부분은 압출물의 팽창에 있어서 중요한 역할을 한다. 본 논문은 모세관 다이에서 여러 가지 고무복합체에 따른 다이팽윤을 알아보기 위해 상용 CFD 프로그램인 Polyflow를 사용하여 해석을 수행하였다. 컴퓨터 모사에서는 비선형 미분 점탄성 모델인 Phan-Thien-Tanner(PTT) 모델을 사용하였고 온도를 고러하여 해석하였다. 해석을 통해서 레저버와 모세관 다이에서 압출물의 압력, 속도, 그리고 온도 분포 등을 예측하였다. 여러 가지 고무 복합체의 다이 팽윤양을 알아보기 위해서 유량과 모세관 다이의 지름을 변경하면서 연구하였다. 본 연구를 통해서 PPT 모델은 고무 복합체에 대한 점탄성 거동을 잘 표현하고 있음을 확인할 수 있었다.

Investigating vibration behavior of smart imperfect functionally graded beam subjected to magnetic-electric fields based on refined shear deformation theory

  • Ebrahimi, Farzad;Jafari, Ali
    • Advances in nano research
    • /
    • 제5권4호
    • /
    • pp.281-301
    • /
    • 2017
  • In this disquisition, an exact solution method is developed for analyzing the vibration characteristics of magneto-electro-elastic functionally graded (MEE-FG) beams by considering porosity distribution and various boundary conditions via a four-variable shear deformation refined beam theory for the first time. Magneto-electroelastic properties of porous FG beam are supposed to vary through the thickness direction and are modeled via modified power-law rule which is formulated using the concept of even and uneven porosity distributions. Porosities possibly occurring inside functionally graded materials (FGMs) during fabrication because of technical problem that lead to creation micro-voids in FG materials. So, it is necessary to consider the effect of porosities on the vibration behavior of MEE-FG beam in the present study. The governing differential equations and related boundary conditions of porous MEE-FG beam subjected to physical field are derived by Hamilton's principle based on a four-variable tangential-exponential refined theory which avoids the use of shear correction factor. An analytical solution procedure is used to achieve the natural frequencies of porous-FG beam supposed to magneto-electrical field which satisfies various boundary conditions. A parametric study is led to carry out the effects of material graduation exponent, porosity parameter, external magnetic potential, external electric voltage, slenderness ratio and various boundary conditions on dimensionless frequencies of porous MEE-FG beam. It is concluded that these parameters play noticeable roles on the vibration behavior of MEE-FG beam with porosities. Presented numerical results can be applied as benchmarks for future design of MEE-FG structures with porosity phases.

Convolutional Neural Network with Expert Knowledge for Hyperspectral Remote Sensing Imagery Classification

  • Wu, Chunming;Wang, Meng;Gao, Lang;Song, Weijing;Tian, Tian;Choo, Kim-Kwang Raymond
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권8호
    • /
    • pp.3917-3941
    • /
    • 2019
  • The recent interest in artificial intelligence and machine learning has partly contributed to an interest in the use of such approaches for hyperspectral remote sensing (HRS) imagery classification, as evidenced by the increasing number of deep framework with deep convolutional neural networks (CNN) structures proposed in the literature. In these approaches, the assumption of obtaining high quality deep features by using CNN is not always easy and efficient because of the complex data distribution and the limited sample size. In this paper, conventional handcrafted learning-based multi features based on expert knowledge are introduced as the input of a special designed CNN to improve the pixel description and classification performance of HRS imagery. The introduction of these handcrafted features can reduce the complexity of the original HRS data and reduce the sample requirements by eliminating redundant information and improving the starting point of deep feature training. It also provides some concise and effective features that are not readily available from direct training with CNN. Evaluations using three public HRS datasets demonstrate the utility of our proposed method in HRS classification.

Thermal, electrical and mechanical buckling loads of sandwich nano-beams made of FG-CNTRC resting on Pasternak's foundation based on higher order shear deformation theory

  • Arani, Ali Ghorbanpour;Pourjamshidian, Mahmoud;Arefi, Mohammad;Arani, M.R. Ghorbanpour
    • Structural Engineering and Mechanics
    • /
    • 제69권4호
    • /
    • pp.439-455
    • /
    • 2019
  • This research deals with thermo-electro-mechanical buckling analysis of the sandwich nano-beams with face-sheets made of functionally graded carbon nano-tubes reinforcement composite (FG-CNTRC) based on the nonlocal strain gradient elasticity theory (NSGET) considering various higher-order shear deformation beam theories (HSDBT). The sandwich nano-beam with FG-CNTRC face-sheets is subjected to thermal and electrical loads while is resting on Pasternak's foundation. It is assumed that the material properties of the face-sheets change continuously along the thickness direction according to different patterns for CNTs distribution. In order to include coupling of strain and electrical field in equation of motion, the nonlocal non-classical nano-beam model contains piezoelectric effect. The governing equations of motion are derived using Hamilton principle based on HSDBTs and NSGET. The differential quadrature method (DQM) is used to calculate the mechanical buckling loads of sandwich nano-beam as well as critical voltage and temperature rising. After verification with validated reference, comprehensive numerical results are presented to investigate the influence of important parameters such as various HSDBTs, length scale parameter (strain gradient parameter), the nonlocal parameter, the CNTs volume fraction, Pasternak's foundation coefficients, various boundary conditions, the CNTs efficiency parameter and geometric dimensions on the buckling behaviors of FG sandwich nano-beam. The numerical results indicate that, the amounts of the mechanical critical load calculated by PSDBT and TSDBT approximately have same values as well as ESDBT and ASDBT. Also, it is worthy noted that buckling load calculated by aforementioned theories is nearly smaller than buckling load estimated by FSDBT. Also, similar aforementioned structure is used to building the nano/micro oscillators.

Bending analysis of functionally graded plates with arbitrary shapes and boundary conditions

  • Panyatong, Monchai;Chinnaboon, Boonme;Chucheepsakul, Somchai
    • Structural Engineering and Mechanics
    • /
    • 제71권6호
    • /
    • pp.627-641
    • /
    • 2019
  • The paper focuses on bending analysis of the functionally graded (FG) plates with arbitrary shapes and boundary conditions. The material property of FG plates is modelled by using the power law distribution. Based on the first order shear deformation plate theory (FSDT), the governing equations as well as boundary conditions are formulated and obtained by using the principle of virtual work. The coupled Boundary Element-Radial Basis Function (BE-RBF) method is established to solve the complex FG plates. The proposed methodology is developed by applying the concept of the analog equation method (AEM). According to the AEM, the original governing differential equations are replaced by three Poisson equations with fictitious sources under the same boundary conditions. Then, the fictitious sources are established by the application of a technique based on the boundary element method and approximated by using the radial basis functions. The solution of the actual problem is attained from the known integral representations of the potential problem. Therefore, the kernels of the boundary integral equations are conveniently evaluated and readily determined, so that the complex FG plates can be easily computed. The reliability of the proposed method is evaluated by comparing the present results with those from analytical solutions. The effects of the power index, the length to thickness ratio and the modulus ratio on the bending responses are investigated. Finally, many interesting features and results obtained from the analysis of the FG plates with arbitrary shapes and boundary conditions are demonstrated.

Flutter phenomenon in composite sandwich beams with flexible core under follower force

  • Saghavaz, Fahimeh Rashed;Payganeh, GHolamhassan;Fard, Keramat Malekzadeh
    • Steel and Composite Structures
    • /
    • 제39권5호
    • /
    • pp.615-630
    • /
    • 2021
  • The main purpose of the present work was to study the dynamic instability of a three-layered, thick composite sandwich beam with the functionally graded (FG) flexible core subjected to an axial compressive follower force. Flutter instability of a sandwich cantilever beam was analyzed using the high-order theory of sandwich beams, for the first time. The governing equations in general for sandwich beams with an FG core were extracted and could be used for all types of sandwich beams with any types of face sheets and cores. A polynomial function is considered for the vertical distribution of the displacement field in the core layer along the thickness, based on the results of the first Frosting's higher order model. The governing partial differential equations and the equations of boundary conditions of the dynamic system are derived using Hamilton's principle. By applying the boundary conditions and numerical solution methods of squares quadrature, the beam flutter phenomenon is studied. In addition, the effects of different geometrical and material parameters on the flutter threshold were investigated. The results showed that the responses of the dynamic instability of the system were influenced by the follower force, the coefficients of FGs and the geometrical parameters like the core thickness. Comparison of the present results with the published results in the literature for the special case confirmed the accuracy of the proposed theory. The results showed that the follower force of the flutter phenomenon threshold for long beams tends to the corresponding results in the Timoshenko beam.

Axisymmetric vibration analysis of a sandwich porous plate in thermal environment rested on Kerr foundation

  • Zhang, Zhe;Yang, Qijian;Jin, Cong
    • Steel and Composite Structures
    • /
    • 제43권5호
    • /
    • pp.581-601
    • /
    • 2022
  • The main objective of this research work is to investigate the free vibration behavior of annular sandwich plates resting on the Kerr foundation at thermal conditions. This sandwich configuration is composed of two FGM face sheets as coating layer and a porous GPLRC (GPL reinforced composite) core. It is supposed that the GPL nanofillers and the porosity coefficient vary continuously along the core thickness direction. To model closed-cell FG porous material reinforced with GPLs, Halpin-Tsai micromechanical modeling in conjunction with Gaussian-Random field scheme is used, while the Poisson's ratio and density are computed by the rule of mixtures. Besides, the material properties of two FGM face sheets change continuously through the thickness according to the power-law distribution. To capture fundamental frequencies of the annular sandwich plate resting on the Kerr foundation in a thermal environment, the analysis procedure is with the aid of Reddy's shear-deformation plate theory based high-order shear deformation plate theory (HSDT) to derive and solve the equations of motion and boundary conditions. The governing equations together with related boundary conditions are discretized using the generalized differential quadrature (GDQ) method in the spatial domain. Numerical results are compared with those published in the literature to examine the accuracy and validity of the present approach. A parametric solution for temperature variation across the thickness of the sandwich plate is employed taking into account the thermal conductivity, the inhomogeneity parameter, and the sandwich schemes. The numerical results indicate the influence of volume fraction index, GPLs volume fraction, porosity coefficient, three independent coefficients of Kerr elastic foundation, and temperature difference on the free vibration behavior of annular sandwich plate. This study provides essential information to engineers seeking innovative ways to promote composite structures in a practical way.

Responses of high-rise building resting on piled raft to adjacent tunnel at different depths relative to piles

  • Soomro, Mukhtiar Ali;Mangi, Naeem;Memon, Aftab Hameed;Mangnejo, Dildar Ali
    • Geomechanics and Engineering
    • /
    • 제29권1호
    • /
    • pp.25-40
    • /
    • 2022
  • In this study, 3D coupled-consolidation numerical parametric study was conducted to predict the deformation mechanism of a 20 storey building sitting on (4×4) piled raft (with length of piles, Lp=30 m) to adjacent 6 m diameter (D) tunnelling in stiff clay. The influences of different tunnel locations relative to piles (i.e., zt/Lp) were investigated in this parametric study. In first case, the tunnel was excavated near the pile shafts with depth of tunnel axis (zt) of 9 m (i.e., zt/Lp). In second and third cases, tunnels were driven at zt of 30 m and 42 m (i.e., zt/Lp = 1.0 and 1.4), respectively. An advanced hypoplastic clay model (which is capable of taking small-strain stiffness in account) was adopted to capture soil behaviour. The computed results revealed that tunnelling activity adjacent to a building resting on piled raft caused significant settlement, differential settlement, lateral deflection, angular distortion in the building. In addition, substantial bending moment, shear forces and changes in axial load distribution along pile length were induced. The findings from the parametric study revealed that the building and pile responses significantly influenced by tunnel location relative to pile.