• Title/Summary/Keyword: differentiable mappings

Search Result 19, Processing Time 0.022 seconds

CONVERGENCE OF VISCOSITY APPROXIMATIONS TO FIXED POINTS OF NONEXPANSIVE NONSELF-MAPPINGS IN BANACH SPACES

  • Jung, Jong-Soo
    • East Asian mathematical journal
    • /
    • v.24 no.1
    • /
    • pp.81-95
    • /
    • 2008
  • Let E be a uniformly convex Banach space with a uniformly $G{\hat{a}}teaux$ differentiable norm, C a nonempty closed convex subset of E, and $T\;:\;C\;{\rightarrow}\;E$ a nonexpansive mapping satisfying the weak inwardness condition. Assume that every weakly compact convex subset of E has the fixed point property. For $f\;:\;C\;{\rightarrow}\;C$ a contraction and $t\;{\in}\;(0,\;1)$, let $x_t$ be a unique fixed point of a contraction $T_t\;:\;C\;{\rightarrow}\;E$, defined by $T_tx\;=\;tf(x)\;+\;(1\;-\;t)Tx$, $x\;{\in}\;C$. It is proved that if {$x_t$} is bounded, then $x_t$ converges to a fixed point of T, which is the unique solution of certain variational inequality. Moreover, the strong convergence of other implicit and explicit iterative schemes involving the sunny nonexpansive retraction is also given in a reflexive and strictly convex Banach space with a uniformly $G{\hat{a}}teaux$ differentiable norm.

  • PDF

CONVERGENCE OF APPROXIMATING FIXED POINTS FOR MULTIVALUED NONSELF-MAPPINGS IN BANACH SPACES

  • Jung, Jong Soo
    • Korean Journal of Mathematics
    • /
    • v.16 no.2
    • /
    • pp.215-231
    • /
    • 2008
  • Let E be a uniformly convex Banach space with a uniformly $G{\hat{a}}teaux$ differentiable norm, C a nonempty closed convex subset of E, and $T:C{\rightarrow}{\mathcal{K}}(E)$ a multivalued nonself-mapping such that $P_T$ is nonexpansive, where $P_T(x)=\{u_x{\in}Tx:{\parallel}x-u_x{\parallel}=d(x,Tx)\}$. For $f:C{\rightarrow}C$ a contraction and $t{\in}(0,1)$, let $x_t$ be a fixed point of a contraction $S_t:C{\rightarrow}{\mathcal{K}}(E)$, defined by $S_tx:=tP_T(x)+(1-t)f(x)$, $x{\in}C$. It is proved that if C is a nonexpansive retract of E and $\{x_t\}$ is bounded, then the strong ${\lim}_{t{\rightarrow}1}x_t$ exists and belongs to the fixed point set of T. Moreover, we study the strong convergence of $\{x_t\}$ with the weak inwardness condition on T in a reflexive Banach space with a uniformly $G{\hat{a}}teaux$ differentiable norm. Our results provide a partial answer to Jung's question.

  • PDF

CONVERGENCE OF APPROXIMATING FIXED POINTS FOR NONEXPANSIVE NONSELF-MAPPINGS IN BANACH SPACES

  • Jung, Jong-Soo;Park, Jong-Seo;Park, Eun-Hee
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.2
    • /
    • pp.275-285
    • /
    • 1997
  • Let E be a uniformly convex Banach space with a uniformly G$\hat{a}teaux differentiable norm, C a nonempty closed convex subset of $E, T : C \to E$ a nonexpansive mapping, and Q a sunny nonexpansive retraction of E onto C. For $u \in C$ and $t \in (0,1)$, let $x_t$ be a unique fixed point of a contraction $R_t : C \to C$, defined by $R_tx = Q(tTx + (1-t)u), x \in C$. It is proved that if ${x_t}$ is bounded, then the strong $lim_{t\to1}x_t$ exists and belongs to the fixed point set of T. Furthermore, the strong convergence of ${x_t}$ in a reflexive and strictly convex Banach space with a uniformly G$\hat{a}$teaux differentiable norm is also given in case that the fixed point set of T is nonempty.

  • PDF

CONVERGENCE OF APPROXIMATING PATHS TO SOLUTIONS OF VARIATIONAL INEQUALITIES INVOLVING NON-LIPSCHITZIAN MAPPINGS

  • Jung, Jong-Soo;Sahu, Daya Ram
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.2
    • /
    • pp.377-392
    • /
    • 2008
  • Let X be a real reflexive Banach space with a uniformly $G\hat{a}teaux$ differentiable norm, C a nonempty closed convex subset of X, T : C $\rightarrow$ X a continuous pseudocontractive mapping, and A : C $\rightarrow$ C a continuous strongly pseudocontractive mapping. We show the existence of a path ${x_t}$ satisfying $x_t=tAx_t+(1- t)Tx_t$, t $\in$ (0,1) and prove that ${x_t}$ converges strongly to a fixed point of T, which solves the variational inequality involving the mapping A. As an application, we give strong convergence of the path ${x_t}$ defined by $x_t=tAx_t+(1-t)(2I-T)x_t$ to a fixed point of firmly pseudocontractive mapping T.

Sensitivity analysis of weights in multi-layer perceptron realizing continuous mappings

  • Choi, Chong-Ho;Choi, Jin-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1377-1382
    • /
    • 1990
  • In Multi-Layer Perceptron (MLP) which realizes continuous mappings, the output errors is directly affected by the weight errors which may be caused by the limited precision of digital or analog hardware in implementations. So, it is important to study the sensitivity due to the perturbation of connection weights between neurons. In this paper, we derive a sensitivity function to the statistical weight perturbations in MLP with differentiable activation functions. This sensitivity function can be regarded as an ensemble average of deterministic sensitivity measures due to the perturbations of weights. Hence, this sensitivity function can be used as the criteria for selecting weights with the minimum sensitivity among possible sets of connection weights in MLP. For the verification of the validity of the proposed sensitivity function, computer simulations have been performed and through the simulations we find good agreement between the theoretical and simulation results.

  • PDF

WEAK AND STRONG CONVERGENCE OF MANN'S-TYPE ITERATIONS FOR A COUNTABLE FAMILY OF NONEXPANSIVE MAPPINGS

  • Song, Yisheng;Chen, Rudong
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.5
    • /
    • pp.1393-1404
    • /
    • 2008
  • Let K be a nonempty closed convex subset of a Banach space E. Suppose $\{T_{n}\}$ (n = 1,2,...) is a uniformly asymptotically regular sequence of nonexpansive mappings from K to K such that ${\cap}_{n=1}^{\infty}$ F$\(T_n){\neq}{\phi}$. For $x_0{\in}K$, define $x_{n+1}={\lambda}_{n+1}x_{n}+(1-{\lambda}_{n+1})T_{n+1}x_{n},n{\geq}0$. If ${\lambda}_n{\subset}[0,1]$ satisfies $lim_{n{\rightarrow}{\infty}}{\lambda}_n=0$, we proved that $\{x_n\}$ weakly converges to some $z{\in}F\;as\;n{\rightarrow}{\infty}$ in the framework of reflexive Banach space E which satisfies the Opial's condition or has $Fr{\acute{e}}chet$ differentiable norm or its dual $E^*$ has the Kadec-Klee property. We also obtain that $\{x_n\}$ strongly converges to some $z{\in}F$ in Banach space E if K is a compact subset of E or there exists one map $T{\in}\{T_{n};n=1,2,...\}$ satisfy some compact conditions such as T is semi compact or satisfy Condition A or $lim_{n{\rightarrow}{\infty}}d(x_{n},F(T))=0$ and so on.

REGULARIZATION FOR THE PROBLEM OF FINDING A SOLUTION OF A SYSTEM OF NONLINEAR MONOTONE ILL-POSED EQUATIONS IN BANACH SPACES

  • Tran, Thi Huong;Kim, Jong Kyu;Nguyen, Thi Thu Thuy
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.849-875
    • /
    • 2018
  • The purpose of this paper is to present an operator method of regularization for the problem of finding a solution of a system of nonlinear ill-posed equations with a monotone hemicontinuous mapping and N inverse-strongly monotone mappings in Banach spaces. A regularization parameter choice is given and convergence rate of the regularized solutions is estimated. We also give the convergence and convergence rate for regularized solutions in connection with the finite-dimensional approximation. An iterative regularization method of zero order in a real Hilbert space and two examples of numerical expressions are also given to illustrate the effectiveness of the proposed methods.

APPROXIMATION OF COMMON FIXED POINTS OF NON-SELF ASYMPTOTICALLY NONEXPANSIVE MAPPINGS

  • Kim, Jong-Kyu;Dashputre, Samir;Diwan, S.D.
    • East Asian mathematical journal
    • /
    • v.25 no.2
    • /
    • pp.179-196
    • /
    • 2009
  • Let E be a uniformly convex Banach space and K a nonempty closed convex subset which is also a nonexpansive retract of E. For i = 1, 2, 3, let $T_i:K{\rightarrow}E$ be an asymptotically nonexpansive mappings with sequence ${\{k_n^{(i)}\}\subset[1,{\infty})$ such that $\sum_{n-1}^{\infty}(k_n^{(i)}-1)$ < ${\infty},\;k_{n}^{(i)}{\rightarrow}1$, as $n{\rightarrow}\infty$ and F(T)=$\bigcap_{i=3}^3F(T_i){\neq}{\phi}$ (the set of all common xed points of $T_i$, i = 1, 2, 3). Let {$a_n$},{$b_n$} and {$c_n$} are three real sequences in [0, 1] such that $\in{\leq}\;a_n,\;b_n,\;c_n\;{\leq}\;1-\in$ for $n{\in}N$ and some ${\in}{\geq}0$. Starting with arbitrary $x_1{\in}K$, define sequence {$x_n$} by setting {$$x_{n+1}=P((1-a_n)x_n+a_nT_1(PT_1)^{n-1}y_n)$$ $$y_n=P((1-b_n)x_n+a_nT_2(PT_2)^{n-1}z_n)$$ $$z_n=P((1-c_n)x_n+c_nT_3(PT_3)^{n-1}x_n)$$. Assume that one of the following conditions holds: (1) E satises the Opial property, (2) E has Frechet dierentiable norm, (3) $E^*$ has Kedec -Klee property, where $E^*$ is dual of E. Then sequence {$x_n$} converges weakly to some p${\in}$F(T).