• Title/Summary/Keyword: different moduli

Search Result 151, Processing Time 0.02 seconds

Nonlinear large deflection buckling analysis of compression rod with different moduli

  • Yao, Wenjuan;Ma, Jianwei;Gao, Jinling;Qiu, Yuanzhong
    • Structural Engineering and Mechanics
    • /
    • v.54 no.5
    • /
    • pp.855-875
    • /
    • 2015
  • Many novel materials exhibit a property of different elastic moduli in tension and compression. One such material is graphene, a wonder material, which has the highest strength yet measured. Investigations on buckling problems for structures with different moduli are scarce. To address this new problem, firstly, the nondimensional expression of the relation between offset of neutral axis and deflection curve is derived based on the phased integration method, and then using the energy method, load-deflection relation of the rod is determined; Secondly, based on the improved constitutive model for different moduli, large deformation finite element formulations are developed and combined with the arc-length method, finite element iterative program for rods with different moduli is established to obtain buckling critical loads; Thirdly, material mechanical properties tests of graphite, which is the raw material of graphene, are performed to measure the tensile and compressive elastic moduli, moreover, buckling tests are also conducted to investigate the buckling behavior of this kind of graphite rod. By comparing the calculation results of the energy method and finite element method with those of laboratory tests, the analytical model and finite element numerical model are demonstrated to be accurate and reliable. The results show that it may lead to unsafe results if the classic theory was still adopted to determine the buckling loads of those rods composed of a material having different moduli. The proposed models could provide a novel approach for further investigation of non-linear mechanical behavior for other structures with different moduli.

Estimation of rock tensile and compressive moduli with Brazilian disc test

  • Wei, Jiong;Niu, Leilei;Song, Jae-Joon;Xie, Linmao
    • Geomechanics and Engineering
    • /
    • v.19 no.4
    • /
    • pp.353-360
    • /
    • 2019
  • The elastic modulus is an important parameter to characterize the property of rock. It is common knowledge that the strengths of rocks are significantly different under tension and compression. However, little attention has been paid to the bi-modularity of rock. To validate whether the rock elastic moduli in tension and compression are the same, Brazilian disc, direct tension and compression tests were conducted. A horizontal laser displacement meter and a pair of vertical and transverse strain gauges were applied. Four types of materials were tested, including three types of rock materials and one type of steel material. A comprehensive comparison of the elastic moduli based on different experimental results was presented, and a tension-compression anisotropy model was proposed to explain the experimental results. The results from this study indicate that the rock elastic modulus is different under tension and compression. The ratio of the rock elastic moduli under compression and tension ranges from 2 to 4. The rock tensile moduli from the strain data and displacement data are approximate. The elastic moduli from the Brazilian disc test are consistent with those from the uniaxial tension and compression tests. The Brazilian disc test is a convenient method for estimating the tensile and compressive moduli of rock materials.

COMPARISON OF TWO DESINGULARIZATIONS OF THE MODULI SPACE OF ELLIPTIC STABLE MAPS

  • Lho, Hyenho
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.2
    • /
    • pp.501-523
    • /
    • 2021
  • We study the geometry of the moduli space of elliptic stable maps to projective space. The main component of the moduli space of elliptic stable maps is singular. There are two different ways to desingularize this space. One is Vakil-Zinger's desingularization and the other is via the moduli space of logarithmic stable maps. Our main result is a proof of the direct geometric relationship between these two spaces. For degree less than or equal to 3, we prove that the moduli space of logarithmic stable maps can be obtained by blowing up Vakil-Zinger's desingularization.

An analytical solution of bending thin plates with different moduli in tension and compression

  • He, Xiao-Ting;Hu, Xing-Jian;Sun, Jun-Yi;Zheng, Zhou-Lian
    • Structural Engineering and Mechanics
    • /
    • v.36 no.3
    • /
    • pp.363-380
    • /
    • 2010
  • Materials which exhibit different elastic moduli in tension and compression are known as bimodular materials. The bimodular materials model, which is founded on the criterion of positive-negative signs of principal stress, is important for the structural analysis and design. However, due to the inherent complexity of the constitutive relation, it is difficult to obtain an analytical solution of a bimodular bending components except in particular simple problems. Based on the existent simplified model, this paper solves analytically bending thin plates with different moduli in tension and compression. By using the continuity conditions of stress components in unknown neutral layer, we determine the location of the neutral layer, and derive the governing differential equation for deflection, the flexural rigidity, and the internal forces in the thin plate. We also use a circular thin plate with bimodulus to illustrate the application of this solution derived in this paper. The results show that the introduction of different moduli has influences on the flexural stiffness of the bending thin plate.

Evaluation of Elastic Modulus of Concrete Using Micro-mechanics Models (콘크리트 탄성계수의 미시역학적 추정)

  • 유동우;조호진;송하원;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.345-349
    • /
    • 1995
  • Although heterogeneous materials consisted of micro-constituents are complicated, it is possible to evaulate effective elastic moduli by using micro-mechanics models. In order to evaluate effective elastic moduli of concrete, all aggregates in a representative volume element(RVE) are assumed spherical and randomly distributed. A dilute distribution of inclusions is considered first, and the corresponding overall elastic moduli of the RVE are estimated. Then, the self-consistent method is used in order to take into account the interaction effects. The elastic moduli of concrete are calculated using the models and compared with those of experiment for different volume fractions of the aggregates and elastic moduli of the mortar and the aggregates.

  • PDF

MODULI SPACES OF ORIENTED TYPE ${\mathcal{A}}$ MANIFOLDS OF DIMENSION AT LEAST 3

  • Gilkey, Peter;Park, JeongHyeong
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.1759-1786
    • /
    • 2017
  • We examine the moduli space of oriented locally homogeneous manifolds of Type ${\mathcal{A}}$ which have non-degenerate symmetric Ricci tensor both in the setting of manifolds with torsion and also in the torsion free setting where the dimension is at least 3. These exhibit phenomena that is very different than in the case of surfaces. In dimension 3, we determine all the possible symmetry groups in the torsion free setting.

Fundamental Comparison of Moduli Values in Asphalt Concrete Mixture due to Various Sinusoidal Loadings (다양한 Sinusoidal 하중을 받는 아스팔트콘크리트 혼합물의 Moduli 값에 대한 비교연구)

  • Kim, Nak-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.1 s.20
    • /
    • pp.39-48
    • /
    • 2006
  • A laboratory investigation was performed to estimate the moduli values of asphalt concrete mixture due to various sinusoidal loadings in compression and tension. Total five modes of loading were used under five testing temperatures of 32, 50, 68, 86, and $104^{\circ}F$ (0, 10, 20, 30, and $40^{\circ}C$); repeated compressive haversine loading with rest period, repeated tensile haversine loading with rest period, cyclic compressive loading, cyclic tensile loading, and alternate tensile-compressive loadings. The test results showed that, due to the repeated haversine loading with rest period, asphalt concrete demonstrated similar moduli in tension and compression at low temperatures,(0 and $10^{\circ}C$) while those moduli were different at high temperatures (20, 30, and $40^{\circ}C$). At high temperatures the compressive moduli were always higher than the tensile moduli. The uniaxial tensile moduli were higher than indirect tensile moduli at low temperatures. However, those moduli were similar at high temperatures. In uniaxial cyclic tension, compression, and alternate tension-compression tests, compressive moduli were higher than tensile and alternate tensile-compressive moduli throughout the temperatures. Generally, the moduli from the repeated haversine loading with rest period were always lower than those from the cyclic sinusoidal loading. The difference in moduli from the repeated haversine loading with rest period and cyclic sinusoidal loading becomes more significant as the temperature decreases.

Comparison of Slowness Profiles of Lamb Wave with Elastic Moduli and Crystal Structure in Single Crystalline Silicon Wafers

  • Min, Youngjae;Yun, Gyeongwon;Kim, Kyung-Min;Roh, Yuji;Kim, Young H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • Single crystalline silicon wafers having (100), (110), and (111) directions are employed as specimens for obtaining slowness profiles. Leaky Lamb waves (LLW) from immersed wafers were detected by varying the incident angles of the specimens and rotating the specimens. From an analysis of LLW signals for different propagation directions and phase velocities of each specimen, slowness profiles were obtained, which showed a unique symmetry with different symmetric axes. Slowness profiles were compared with elastic moduli of each wafer. They showed the same symmetries as crystal structures. In addition, slowness profiles showed expected patterns and values that can be inferred from elastic moduli. This implies that slowness profiles can be used to examine crystal structures of anisotropic solids.

Estimation of tensile strength and moduli of a tension-compression bi-modular rock

  • Wei, Jiong;Zhou, Jingren;Song, Jae-Joon;Chen, Yulong;Kulatilake, Pinnaduwa H.S.W.
    • Geomechanics and Engineering
    • /
    • v.24 no.4
    • /
    • pp.349-358
    • /
    • 2021
  • The Brazilian test has been widely used to determine the indirect tensile strength of rock, concrete and other brittle materials. The basic assumption for the calculation formula of Brazilian tensile strength is that the elastic moduli of rock are the same both in tension and compression. However, the fact is that the elastic moduli in tension and compression of most rocks are different. Thus, the formula of Brazilian tensile strength under the assumption of isotropy is unreasonable. In the present study, we conducted Brazilian tests on flat disk-shaped rock specimens and attached strain gauges at the center of the disc to measure the strains of rock. A tension-compression bi-modular model is proposed to interpret the data of the Brazilian test. The relations between the principal strains, principal stresses and the ratio of the compressive modulus to tensile modulus at the disc center are established. Thus, the tensile and compressive moduli as well as the correct tensile strength can be estimated simultaneously by the new formulas. It is found that the tensile and compressive moduli obtained using these formulas were in well agreement with the values obtained from the direct tension and compression tests. The formulas deduced from the Brazilian test based on the assumption of isotropy overestimated the tensile strength and tensile modulus and underestimated the compressive modulus. This work provides a new methodology to estimate tensile strength and moduli of rock simultaneously considering tension-compression bi-modularity.

Elastic Moduli and Dissolution Rates of Resorbable Na2O-MgO-P2O5 Bioglasses (Na2O-MgO-P2O5 생체 유리의 탄성계수와 용해도)

  • ;T.D.Taylor
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.6
    • /
    • pp.850-854
    • /
    • 1989
  • The elastic moduli and dissolution rates of 15 glasses with different mole ratios of sodium-magnasium-phosphate as potential non-toxic biomaterials were investigated. In this study, a 3-pint bending test, sonic resonance technique, and theoretical calculation were used to evaluate the modulus of elasticity. The dissolution rates at 37$^{\circ}C$(human body temperature) were determined by the measurement of mass changes in each sample for 24 weeks.

  • PDF