References
- W. Fulton and R. Pandharipande, Notes on stable maps and quantum cohomology, in Algebraic geometry-Santa Cruz 1995, 45-96, Proc. Sympos. Pure Math., 62, Part 2, Amer. Math. Soc., Providence, RI, 1997. https://doi.org/10.1090/pspum/062.2/ 1492534
- Y. Hu and J. Li, Genus-one stable maps, local equations, and Vakil-Zinger's desingularization, Math. Ann. 348 (2010), no. 4, 929-963. https://doi.org/10.1007/s00208-010-0504-8
- K. Kato, Logarithmic structures of Fontaine-Illusie, in Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988), 191-224, Johns Hopkins Univ. Press, Baltimore, MD, 1989.
- B. Kim, Logarithmic stable maps, in New developments in algebraic geometry, integrable systems and mirror symmetry (RIMS, Kyoto, 2008), 167-200, Adv. Stud. Pure Math., 59, Math. Soc. Japan, Tokyo, 2010. https://doi.org/10.2969/aspm/05910167
- A. Marian, D. Oprea, and R. Pandharipande, The moduli space of stable quotients, Geom. Topol. 15 (2011), no. 3, 1651-1706. https://doi.org/10.2140/gt.2011.15.1651
- D. I. Smyth, Modular compactifications of the space of pointed elliptic curves I, Compos. Math. 147 (2011), no. 3, 877-913. https://doi.org/10.1112/S0010437X10005014
- R. Vakil and A. Zinger, A natural smooth compactification of the space of elliptic curves in projective space, Electron. Res. Announc. Amer. Math. Soc. 13 (2007), 53-59. https://doi.org/10.1090/S1079-6762-07-00174-6
- R. Vakil and A. Zinger, A desingularization of the main component of the moduli space of genus-one stable maps into ℝn, Geom. Topol. 12 (2008), no. 1, 1-95. https://doi.org/10.2140/gt.2008.12.1
- M. Viscardi, Alternate compactifications of the moduli space of genus one maps, Manuscripta Math. 139 (2012), no. 1-2, 201-236. https://doi.org/10.1007/s00229-011-0513-2