• Title/Summary/Keyword: difference signal

Search Result 1,756, Processing Time 0.026 seconds

Estimation Technique of Time Difference of Acoustic Signal in Underwater Environments (수중 환경에서의 음향 신호의 시간 차이 추정 기법)

  • Lee, Young-Pil;Moon, Yong-Seon;Ko, Nak-Yong;Choi, Hyun-Taek;Lee, Jeong-Gu;Bae, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.3
    • /
    • pp.253-262
    • /
    • 2016
  • Recently, UWAC (underwater acoustic communication) has been studied by many scholars and researchers. DS-CDMA, OFDM (orthogonal-frequency division multiplexing), and MIMO (multi-input multi-output), modulation and error correction, and others techniques that can transmit high-speed data are used in UWAC. In this paper, we first briefly present the theoretical background of estimating the arrival time of the first non-background segment in both signals and calculate the temporal difference. We also present the initial experimental result of estimating the arrival time.

Color enhancement system Based on the improvement of Transition Time and color detdetion Stability (천이 시간 개선과 색검출 안정화 기반의 색 향상 시스템)

  • Lee, Eung-Joo
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.3
    • /
    • pp.715-719
    • /
    • 1998
  • In this paper, we propose a color enhancement system which is based on the improvement of transition time problem and specific color detection stability. The proposcd system apply the time difference correction step to corrects time difference which is taken place at the transimission process between color signal and color subcarrier signal and to reduce detection errors. And also, we proposed stability method to improve transition time problem and detection efficiency as the control of reference color. The proposed system controls specific color when the mean difference value of detected voltages greater than the value of minimum discriminate voltages of two adjacent color signals. Thus, the color enhancement system improves detection efficiency and controls specific color from the color signal without overlapping of correction range.

  • PDF

Impact location on a stiffened composite panel using improved linear array

  • Zhong, Yongteng;Xiang, Jiawei
    • Smart Structures and Systems
    • /
    • v.24 no.2
    • /
    • pp.173-182
    • /
    • 2019
  • Due to the degradation of beamforming properties at angles close to $0^{\circ}$ to $180^{\circ}$, linear array does not have a complete $180^{\circ}$ inspection range but a smaller one. This paper develops a improved sensor array with two additional sensors above and below the linear sensor array, and presents time difference and two dimensional multiple signal classification (2D-MUSIC) based impact localization for omni-directional localization on composite structures. Firstly, the arrival times of impact signal observed by two additional sensors are determined using the wavelet transform and compared, and the direction range of impact source can be decided in general, $0^{\circ}$ to $180^{\circ}$ or $180^{\circ}$ to $360^{\circ}$. And then, 2D-MUSIC based spatial spectrum formula using uniform linear array is applied for locate accurate position of impact source. When the arrival time of impact signal observed by two additional sensors is equal, the direction of impact source can be located at $0^{\circ}$ or $180^{\circ}$ by comparing the first and last sensor of linear array. And then the distance is estimated by time difference algorithm. To verify the proposed approach, it is applied to a quasi-isotropic epoxy laminate plate and a stiffened composite panel. The results are in good agreement with the actual impact occurring position.

Signal processing method of bubble detection in sodium flow based on inverse Fourier transform to calculate energy ratio

  • Xu, Wei;Xu, Ke-Jun;Yu, Xin-Long;Huang, Ya;Wu, Wen-Kai
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.3122-3125
    • /
    • 2021
  • Electromagnetic vortex flowmeter is a new type of instrument for detecting leakage of steam generator, and the signal processing method based on the envelope to calculate energy ratio can effectively detect bubbles in sodium flow. The signal processing method is not affected by changes in the amplitude of the sensor output signal, which is caused by changes in magnetic field strength and other factors. However, the detection sensitivity of the electromagnetic vortex flowmeter is reduced. To this end, a signal processing method based on inverse Fourier transform to calculate energy ratio is proposed. According to the difference between the frequency band of the bubble noise signal and the flow signal, only the amplitude in the frequency band of the flow signal is retained in the frequency domain, and then the flow signal is obtained by the inverse Fourier transform method, thereby calculating the energy ratio. Using this method to process the experimental data, the results show that it can detect 0.1 g/s leak rate of water in the steam generator, and its performance is significantly better than that of the signal processing method based on the envelope to calculate energy ratio.

Reproducibility of Electromyography Signal Amplitude during Repetitive Dynamic Contraction

  • Mo, Seung-Min;Kwag, Jong-Seon;Jung, Myung-Chul
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.6
    • /
    • pp.689-694
    • /
    • 2011
  • Objective: The aim of this study is to evaluate the fluctuation of signal amplitude during repetitive dynamic contraction based on surface electromyography(EMG). Background: The most previous studies were considered isometric muscle contraction and they were difference to smoothing window length by moving average filter. In practical, the human movement is dynamic state. Dynamic EMG signal which indicated as the nonstationary pattern should be analyzed differently compared with the static EMG signal. Method: Ten male subjects participated in this experiment, and EMG signal was recorded by biceps brachii, anterior/posterior deltoid, and upper/lower trapezius muscles. The subject was performed to repetitive right horizontal lifting task during ten cycles. This study was considered three independent variables(muscle, amplitude processing technique, and smoothing window length) as the within-subject experimental design. This study was estimated muscular activation by means of the linear envelope technique(LE). The dependent variable was set coefficient of variation(CV) of LE for each cycle. Results: The ANOVA results showed that the main and interaction effects between the amplitude processing technique and smoothing window length were significant difference. The CV value of peak LE was higher than mean LE. According to increase the smoothing window length, this study shows that the CV trend of peak LE was decreased. However, the CV of mean LE was analyzed constant fluctuation trend regardless of the smoothing window length. Conclusion: Based on these results, we expected that using the mean LE and 300ms window length increased reproducibility and signal noise ratio during repetitive dynamic muscle contraction. Application: These results can be used to provide fundamental information for repetitive dynamic EMG signal processing.

A Study on the Wet Type Ultrasonic Flow-meter System Development (습식방식의 초음파 유량계 시스템 개발에 관한 연구)

  • Lee Eung-Suk;Kwon Oh-Hoon;Rho Myung-Hwan;Lee Hyung-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.12 s.243
    • /
    • pp.1638-1644
    • /
    • 2005
  • This paper suggests fur the study on a fluid velocity measuring system using ultrasonic transducer. In general, the time difference method to measure the distance between transducers has been known. In this paper, the practical technology for manufacturing ultrasonic flow meter system is studied using the time difference method. The ultrasonic transducer was designed and manufactured. The transmission and receiving algorithm for ultrasonic signal was studied. The ultrasonic flow measuring system was experimented in laboratory using a water reservoir for verifying the distance measuring accuracy. Finally, it was tested in flow calibration laboratory for the velocity measuring performance. The system, designed in this study, showed 0.3 mm resolution in distance measurement. For precise flow measurement, a high speed triggering algorithm is required for ultrasonic signal receiving.

A Reversible Audio Watermarking Scheme

  • Kim, Hyoung-Joong;Sachnev, Vasiliy;Kim, Ki-Seob
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.5 no.1
    • /
    • pp.37-42
    • /
    • 2006
  • A reversible audio watermarking algorithm is presented in this paper. This algorithm transforms the audio signal with the integer wavelet transform first in order to enhance the correlation between neighbor audio samples. Audio signal has low correlation between neighbor samples, which makes it difficult to apply difference expansion scheme. Second, a novel difference expansion scheme is used to embed more data by reducing the size of location map. Therefore, the difference expansion scheme used in this paper theoretically secures high embedding capacity under low perceptual distortion. Experiments show that this scheme can hide large number of information bits and keeps high perceptual quality.

  • PDF

Phase Difference Detector for Satellite Tracking Based on Field Experiments of COMETS

  • Ta, Masuhisa;Nakajima, Isao;Juzoji, Hiroshi
    • Journal of Multimedia Information System
    • /
    • v.5 no.3
    • /
    • pp.155-162
    • /
    • 2018
  • Nowadays, the tracking technology of Quadrant Detector will become actual by new micro devices. Based on the past filed data of the reception experiment with COMETS satellite, we have studied on new device (AD8302, phase difference detector) was acquired and suspect its abilities. In 1998, we have developed a Quadrant Detector for mobile to track a weak signal from satellite on Ka band of COMETS. The Quadrant Detector is comprised of four dedicated feed components for reception under an environment of Nakagami - Rician fading, and one transmission and reception feed component. We were successful in receiving a 23 GHz beacon signal from ICE transponder of the COMETS and succeeded in tracking the satellite from a moving vehicle at speeds of approximately 10 ~ 20 Km/h on paved roads. In 2018, with new device AD8302, we have verified new QD system and performed a simulation, based on the past filed experiment. This new device shall be improving the tracking abilities from mobile body on the earth to the multimedia satellite.

A method and condition of locating the position by using the phase difference relation in one dimension (1차원에서 위상차를 이용한 위치추적 방법과 조건)

  • Jeong Rag-Gyo;Shin Ki-Dong;Cho Hong-Shik;Chung Sang-Gi;Yoon Yong-Ki
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1367-1371
    • /
    • 2004
  • In this paper, we propose a method and condition of locating the position of an object in one dimension by using the phase difference of arrival(PDOA), To get a phase difference, the comparator of a wayside radio station(WRS) compares the reference signal with the received signal, Therefore, we can locate the position of a moving object. Finally, by using the simulation of a computer we analyze their values.

  • PDF

Finite-difference Time-domain Study on Birefringence Changes of the Axon During Neural Activation

  • Lee, Jong-Hwan;Kim, Sung-June
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.272-278
    • /
    • 2009
  • Recently, there has been a growing interest in optical imaging of neural activity because the optical neuroimaging has considerable advantages over conventional imaging. Birefringence of the axon has been reported to change during neural activation, but the neurophysiological origin of the change is still unresolved. This study hypothesizes that the birefringence signal is at least partially attributed to the transient cellular volume change associated with nerve excitation. To examine this hypothesis, we investigated how the intensity of cross-polarized light transmitting through the axon would change as the size of the axon changes. For this purpose, a two-dimensional finite-difference time-domain program was developed with the improvement of the total-field/scattered-field method which reduces numerical noise. The results support our hypothesis in that the computed cross-polarized signals exhibit some agreement with previously-reported birefringence signals.