• 제목/요약/키워드: difference of squared range measurements

검색결과 3건 처리시간 0.015초

Hybrid Linear Closed-Form Solution in Wireless Localization

  • Cho, Seong Yun
    • ETRI Journal
    • /
    • 제37권3호
    • /
    • pp.533-540
    • /
    • 2015
  • In wireless localization, several linear closed-form solution (LCS) methods have been investigated as a direct result of the drawbacks that plague the existing iterative methods, such as the local minimum problem and heavy computational burden. Among the known LCS methods, both the direct solution method and the difference of squared range measurements method are considered in this paper. These LCS methods do not have any of the aforementioned problems that occur in the existing iterative methods. However, each LCS method does have its own individual error property. In this paper, a hybrid LCS method is presented to reduce these errors. The hybrid LCS method integrates the two aforementioned LCS methods by using two check points that give important information on the probability of occurrence of each LCS's individual error. The results of several Monte Carlo simulations show that the proposed method has a good performance. The solutions provided by the proposed method are accurate and reliable. The solutions do not have serious errors such as those that occur in the conventional standalone LCS and iterative methods.

거리정보 기반 무선위치추정을 위한 혼합 폐쇄형 해 (Hybrid Closed-Form Solution for Wireless Localization with Range Measurements)

  • 조성윤
    • 제어로봇시스템학회논문지
    • /
    • 제19권7호
    • /
    • pp.633-639
    • /
    • 2013
  • Several estimation methods used in the range measurement based wireless localization area have individual problems. These problems may not occur according to certain application areas. However, these problems may give rise to serious problems in particular applications. In this paper, three methods, ILS (Iterative Least Squares), DS (Direct Solution), and DSRM (Difference of Squared Range Measurements) methods are considered. Problems that can occur in these methods are defined and a simple hybrid solution is presented to solve them. The ILS method is the most frequently used method in wireless localization and has local minimum problems and a large computational burden compared with closed-form solutions. The DS method requires less processing time than the ILS method. However, a solution for this method may include a complex number caused by the relations between the location of reference nodes and range measurement errors. In the near-field region of the complex solution, large estimation errors occur. In the DSRM method, large measurement errors occur when the mobile node is far from the reference nodes due to the combination of range measurement error and range data. This creates the problem of large localization errors. In this paper, these problems are defined and a hybrid localization method is presented to avoid them by integrating the DS and DSRM methods. The defined problems are confirmed and the performance of the presented method is verified by a Monte-Carlo simulation.

Suomi-NPP위성 DNB관측을 이용한 우리나라 소도시에서의 야간 에어로졸 광학두께 추정 (Estimation of nighttime aerosol optical thickness from Suomi-NPP DNB observations over small cities in Korea)

  • 추교황;정명재
    • 대한원격탐사학회지
    • /
    • 제32권2호
    • /
    • pp.73-86
    • /
    • 2016
  • 이 연구에서는 Suomi-National Polar Partnership(Suomi-NPP) 위성에 탑재된 Visible Infrared Imaging Radiometer Suite(VIIRS) 센서의 Day/Night Band(DNB)로부터 측정된 인공광원 복사휘도 정보를 이용하여 우리나라 소도시들에서 야간 에어로졸 광학두께를 추정하는 방법을 개발하였다. 개발된 알고리즘에서는 야간에 도시의 인공광원들로부터 방출되는 빛을 광원으로하여 Beer의 복사 감쇠법칙이 이용되었으며, VIIRS의 적외선 영역 M밴드 관측자료를 사용하여 구름화소를 제거함으로써 청천화소에 대하여 에어로졸 광학두께를 산출하였다. 본 연구에서 산출된 야간 에어로졸 광학두께 결과는 주간 MODerate resolution Imaging Spectroradiometer(MODIS) 센서로부터 산출된 자료와 비교 검증하였다. 검증 결과, 도시에 따라 0.6~0.7이상의 상관계수와 0.14~0.18 범위의 제곱근-평균-제곱 차이(Root-Mean-Square Difference; RMSD)를 보였다. 추가적으로 야간 에어로졸 광학두께에 영향을 미치는 인자들에 대한 민감도 실험을 수행하여 개발된 알고리즘의 산출 오차의 범위를 추정하였다. 본 연구를 통하여 우리나라에서 야간에 DNB채널 관측자료를 이용하여 에어로졸 광학두께를 추정할 수 있는 가능성을 확인 하였으며, 개발된 알고리즘의 지속적인 개발 및 개선이 이루어진다면 향후 국내에서 기존에 부족했던 야간 에어로졸 정보의 산출에 기여할 것으로 기대된다.