DOI QR코드

DOI QR Code

Estimation of nighttime aerosol optical thickness from Suomi-NPP DNB observations over small cities in Korea

Suomi-NPP위성 DNB관측을 이용한 우리나라 소도시에서의 야간 에어로졸 광학두께 추정

  • Choo, Gyo-Hwang (Department of Atmospheric Environmental Sciences, Gangneung-Wonju National University) ;
  • Jeong, Myeong-Jae (Department of Atmospheric Environmental Sciences, Gangneung-Wonju National University)
  • 추교황 (강릉원주대학교 대기환경과학과) ;
  • 정명재 (강릉원주대학교 대기환경과학과)
  • Received : 2015.12.07
  • Accepted : 2016.01.25
  • Published : 2016.04.30

Abstract

In this study, an algorithm to estimate Aerosol Optical Thickness (AOT) over small cities during nighttime has been developed by using the radiance from artificial light sources in small cities measured from Visible Infrared Imaging Radiometer Suite (VIIRS) sensor's Day/Night Band (DNB) aboard the Suomi-National Polar Partnership (Suomi-NPP) satellite. The algorithm is based on Beer's extinction law with the light sources from the artificial lights over small cities. AOT is retrieved for cloud-free pixels over individual cities, and cloud-screening was conducted by using the measurements from M-bands of VIIRS at infrared wavelengths. The retrieved nighttime AOT is compared with the aerosol products from MODerate resolution Imaging Spectroradiometer (MODIS) aboard Terra and Aqua satellites. As a result, the correlation coefficients over individual cities range from around 0.6 and 0.7 between the retrieved nighttime AOT and MODIS AOT with Root-Mean-Squared Difference (RMSD) ranged from 0.14 to 0.18. In addition, sensitivity tests were conducted for the factors affecting the nighttime AOT to estimate the range of uncertainty in the nighttime AOT retrievals. The results of this study indicate that it is promising to infer AOT using the DNB measaurements over small cities in Korea at night. After further development and refinement in the future, the developed retrieval algorithm is expected to produce nighttime aerosol information which is not operationally available over Korea.

이 연구에서는 Suomi-National Polar Partnership(Suomi-NPP) 위성에 탑재된 Visible Infrared Imaging Radiometer Suite(VIIRS) 센서의 Day/Night Band(DNB)로부터 측정된 인공광원 복사휘도 정보를 이용하여 우리나라 소도시들에서 야간 에어로졸 광학두께를 추정하는 방법을 개발하였다. 개발된 알고리즘에서는 야간에 도시의 인공광원들로부터 방출되는 빛을 광원으로하여 Beer의 복사 감쇠법칙이 이용되었으며, VIIRS의 적외선 영역 M밴드 관측자료를 사용하여 구름화소를 제거함으로써 청천화소에 대하여 에어로졸 광학두께를 산출하였다. 본 연구에서 산출된 야간 에어로졸 광학두께 결과는 주간 MODerate resolution Imaging Spectroradiometer(MODIS) 센서로부터 산출된 자료와 비교 검증하였다. 검증 결과, 도시에 따라 0.6~0.7이상의 상관계수와 0.14~0.18 범위의 제곱근-평균-제곱 차이(Root-Mean-Square Difference; RMSD)를 보였다. 추가적으로 야간 에어로졸 광학두께에 영향을 미치는 인자들에 대한 민감도 실험을 수행하여 개발된 알고리즘의 산출 오차의 범위를 추정하였다. 본 연구를 통하여 우리나라에서 야간에 DNB채널 관측자료를 이용하여 에어로졸 광학두께를 추정할 수 있는 가능성을 확인 하였으며, 개발된 알고리즘의 지속적인 개발 및 개선이 이루어진다면 향후 국내에서 기존에 부족했던 야간 에어로졸 정보의 산출에 기여할 것으로 기대된다.

Keywords

References

  1. Barreto, A., E. Cuevas, B. Damiri, C. Guirado, T. Berkoff, A.J. Berjon, Y. Hernandez, F. Almansa, and M. Gil, 2013. A new method for mocturnal aerosol measurements with a lunar photometer prototype, Atmospheric Measurement Techniques, 6: 585-598, doi:10.5194/atm-6-585.
  2. Berkoff T.A., M. Sorokin, T.F. Eck, R. Hoff, E. Welton, and B. Holben, 2011. Nocturnal Aerosol Optical Depth Measurements with a Small-Aperture Automated Photometer Using the Moon as a Light Source, Journal of Atmospheric and Oceanic Technology, 28: 1297-1306. https://doi.org/10.1175/JTECH-D-10-05036.1
  3. Bibi, H., K. Alam, F. Chishtie, S. Bibi, I. Shahid, and T. Blaschke, 2015. Intercomparison of MODIS, MISR, OMI, and CALIPSO aerosol optical depth retrievals for four locations on the Indo-Gangetic plains and validation against AERONET data, Atmospheric Environment, 111: 113-126. https://doi.org/10.1016/j.atmosenv.2015.04.013
  4. Cao, C., F.J. DeLuccia, X. Xiong, R. Wolfe, and F. Weng, 2014. Early On-Orbit Performance of the Visible Infrared Imaging Radiometer Suite Onboard the Suomi National Polar-Orbiting Partnership (S-NPP) Satellite, IEEE Transactions on Geoscience and Remote Sensing, 52(2): 1142-1156. https://doi.org/10.1109/TGRS.2013.2247768
  5. EPA, 2015. PM Centers, http://www.epa.gov/ncer/science/pm/centers.html, Accessed on 2 October 2015.
  6. Holben B.N., T.F. Eck, I. Slutsker, D. Tanre, J.P. Buis, A. Setzer, E. Vermote, J.A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, 1998. AERONET - A federated instrument network and data archive for aerosol characterization, Remote Sensing of Environment, 66: 1-16. https://doi.org/10.1016/S0034-4257(98)00031-5
  7. Hsu, N.C., M.-J. Jeong, C. Bettenhausen, A.M. Sayer, R. Hansell, C.S. Seftor, J. Huang, and S.-C. Tsay, 2013. Enhanced Deep Blue aerosol retrieval algorithm: The second generation, Journal of the Atmospheric Sciences, 118: 9296-9315, doi:10.1002/jgrd.50712.
  8. Jeong, M.-J., 2013. Retrieval of Atmospheric Optical Thickness from Digital Images of the Moon, Korean Journal of Remote Sensing, 29(5): 555-568(in Korean with English abstract). https://doi.org/10.7780/kjrs.2013.29.5.11
  9. Johnson, R.S., J. Zhang, E.J. Hyer, S.D. Miller, and J.S. Reid, 2013. Preliminary investigations toward nighttime aerosol optical depth retrievals from the VIIRS Day/Night Band, Atmospheric Measurement Techniques, 6: 1245-1255, doi:10.5194/amt-6-1245.
  10. Kasten, F., 1965. A new table and approximate formula for relative optical air mass, Archiv fur Meteorologie, Geophysik und Bioklimatologie, Serie B, 14(2): 206-223. https://doi.org/10.1007/BF02248840
  11. Kaufman, Y.J., D. Tanre, and O. Boucher, 2002. A satellite view of aerosols in the climate system, Nature, 419(6903): 251-223. https://doi.org/10.1038/419251a
  12. Kotchenova, S.Y., E.F. Vermote, R. Levy, and A. Lyapustin, 2008. Radiative transfer codes for atmospheric correction and aerosol retrieval: intercomparison study, Applied Optics, 47(13): 2215-2226. https://doi.org/10.1364/AO.47.002215
  13. Levy, R.C., L.A. Remer, R.G. Kleidman, S. Mattoo, C. Ichoku, R. Kahn, and T.F. Eck, 2010. Global evaluation of the Collection 5 MODIS darktarget aerosol products over land, Atmospheric Chemistry and Physicsics, 10(21): 10399-10420. https://doi.org/10.5194/acp-10-10399-2010
  14. Levy, R.C., S. Mattoo, L.A. Munchak, L.A. Remer, A.M. Sayer, F. Patadia, and N.C. Hsu, 2013. The Collection 6 MODIS aerosol products over land and ocean, Atmospheric Measurement Techniques, 6: 2989-3034. https://doi.org/10.5194/amt-6-2989-2013
  15. Ma, X., K. Bartlett, K. Harmon, and F. Yu, 2013. Comparison of AOD between CALIPSO and MODIS: significant differences over major dust and biomass burning regions, Atmospheric Measurement Techniques, 6: 2391-2401. https://doi.org/10.5194/amt-6-2391-2013
  16. McKendry, I.G., J.P. Hacker, R. stull, S. Sakiyama, D. Mignacca, and L. Reid, 2001. Long-range transport of Asian dust to the Lower Fraser Valley, British Columbia, Canada, Journal of the Geophysical Research: Atmospheres, 106(D16): 18361-18370. https://doi.org/10.1029/2000JD900359
  17. Robinson, N., 1966. Solar Radiation, American Elsevier, New York.
  18. Sayer, A.M., N.C. Hsu, C. Bettenhausen, and M.-J. Jeong, 2013. Validation and uncertainty estimates for MODIS Collection 6 "Deep Blue" aerosol data, Journal of the Geophysical Research: Atmospheres, 118(14): 7864-7872, doi:10.1002/jgrd.50600.
  19. Schueler, C.F., T.F. Lee, and S.D. Miller, 2013. VIIRS constant spatial-resolution advantages, International Journal of Remote Sensing, 34: 5761-5777. https://doi.org/10.1080/01431161.2013.796102
  20. Schuster, G.L., M. Vaughan, D. MacDonnell, W. Su, D. Winker, O. Dubovik, T. Lapyonok, and C. Trepte, 2012. Comparison of CALIPSO aerosol optical depth retrievals to AERONET measurements, and a climatology for the lidar ratio of dust, Atmospheric Chemistry and Physics Oiscussions, 12(5): 11641-11697. https://doi.org/10.5194/acpd-12-11641-2012
  21. Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley, 2013. Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  22. Twomey, S.A., 1997. The influence of pollution on the shortwave albedo of clouds, Journal of the Atmospheric Sciences, 34: 1149-1152. https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2
  23. Walther, A., A.K. Heidinger, and S. Miller, 2013. The expected performance of cloud optical and microphysical properties derived from Suomi NPP VIIRS day/night band lunar reflectance, Journal of the Geophysical Research: Atmospheres, 118(13): 13230-13240, doi:10.1002/2013JD020478.
  24. Zhang, J., A.S.A. Christopher, L.A. Remer, and Y.J. Kaufman, 2005. Shortwave aerosol radiative forcing over cloud-free oceans from Terra: 2. Seasonal and global distributions, Journal of the Geophysical Research: Atmospheres, 110(D10): doi:10.1029/2004JD005009.
  25. Zhang, J., J.R. Cmpbell, J.S. Reid, D.L. Westphal, N.L. Baker, W.F. Campbell, and E.J. Hyer, 2011. Evaluating the impact of assimilating CALIOP-derived aerosol extinction profiles on a global mass transport model, Geophysical Research Letters, 38: L14801, doi:10.1029/2011GL047737.
  26. Zhao, T.L., S.L. Gong, X.Y. Zhang, -P. Blanchet, I.G. McKendry, and Z.J. Zhou, 2006. A Simulated Climatology of Asian Dust Aerosol and Its Trans-Pacific Transport. Part I: Mean Climate and Validation, Journal of climate, 19(1): 88-103. https://doi.org/10.1175/JCLI3605.1

Cited by

  1. Characterization and application of artificial light sources for nighttime aerosol optical depth retrievals using the Visible Infrared Imager Radiometer Suite Day/Night Band vol.12, pp.6, 2016, https://doi.org/10.5194/amt-12-3209-2019
  2. Aerosol characterization using satellite remote sensing of light pollution sources at night vol.495, pp.1, 2016, https://doi.org/10.1093/mnrasl/slaa060
  3. Night-time monitoring of the aerosol content of the lower atmosphere by differential photometry of the anthropogenic skyglow vol.500, pp.1, 2016, https://doi.org/10.1093/mnrasl/slaa181