• Title/Summary/Keyword: difference of air pressure

Search Result 549, Processing Time 0.024 seconds

Evaluation of Energy Consumption of HVAC System for Air Filter Pressure Difference Change in Commercial Buildings (공조설비의 필터차압 변화에 따른 에너지 소비성능 평가)

  • Won Keun-Ho;Kwak Ro-Yeul;Huh Jung-ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.12
    • /
    • pp.1227-1233
    • /
    • 2004
  • Air handling unit (AHU)'s air filter pressure difference is important for energy consumption and indoor air quality. Both energy Performance data and air filter differential pressure of AHU in real office buildings were monitored and analyzed to investigate quantitatively energy impact as dust buildup level on air filter grows. We also modeled and simulated CAV system using HVACSIM+ program to examine the energy effect of dust buildup on filters. Through analysis of time series pressure drop data, the filter pressure difference rate has been increased due to cumulative supply air flow rate increase. As filter pressure drop increased to 1 inch water column, it is found that the supply air flow rate was decreased by 10%, the chilled water flow rate was increased by 5.9% and the pump energy consumption was increased to 5.9%.

Effect of Opening Roller Speed, Drums Speed Difference and Suction Air Pressure on Properties of Open-End Friction Spun Polyester and Acrylic Yarns

  • Vishnoi Prashant;Ishtiaque S. M.;Das A.
    • Fibers and Polymers
    • /
    • v.6 no.3
    • /
    • pp.250-258
    • /
    • 2005
  • The present paper is concerned with the influence of opening roller speed, drum speed difference and suction air pressure on properties of polyester and acrylic open-end friction spun yams. The results shows that the opening roller speed and the suction air pressure have considerable influence on the characteristics of polyester and acrylic open-end friction spun yams. In case of polyester yams the unevenness, imperfection and hairiness decreases and the yam tenacity increases with the increase in opening roller speed and suction air pressure. However for acrylic yams the unevenness and imperfections decreases and tenacity increases with the increase in opening roller speed and suction air pressure.

Temperature Separation Characteristics of a Vortex Tube Based on the Back Pressure of the Cold Air Exit (저온 출구의 배압조건에 따른 볼텍스 튜브의 온도분리 특성 연구)

  • Im, Seokyeon
    • Tribology and Lubricants
    • /
    • v.32 no.5
    • /
    • pp.166-171
    • /
    • 2016
  • Electric vehicle ownership is expanding for two reasons: its technology features have enhanced fuel economy, and the number of vehicle emissions regulations is increasing. Battery performance has a large influence on the capability of electric vehicles, and even though battery thermal management has been actively researched, specific technological improvements to battery performance are not being presented. For instance, many industrial applications utilize vortex tubes as components for refrigeration machines because of their numerous intrinsic benefits. If electric vehicles incorporate vortex tubes for battery cooling, performance and efficiency advancements are possible. This study uses a counter-flow vortex tube to investigate its temperature separation characteristics, based on the back pressure of the cold air exit and the difference between the inlet and back pressures. The experiment uses a vortex tube with the following parameters: six nozzle holes, a 20 mm inner vortex diameter (D), a 14D tube length, a 0.7D cold exit orifice diameter, and a nozzle area ratio of 0.142. The measurements prove that the temperature difference between the hot air and cold air decreased because of the flow resistance of the hot air and the backflow phenomenon at the cold air exit. The flow resistance causes the temperature difference to decrease, and the back pressure of the cold air exit influences the flow resistance. The results show that the back pressure significantly influences the efficiency of temperature separation.

A Study on The Effect of Air-Vent Utilized to Dental Precision Casting (치과정밀주조에 활용되는 Air-Vent의 효과에 관한 연구)

  • Kim, Bu-Sob
    • Journal of Technologic Dentistry
    • /
    • v.16 no.1
    • /
    • pp.5-11
    • /
    • 1994
  • On purpose of relative comparison of between air-vent attached pattern and non attached one, casting tests were accomplished by castability analysis unrig wax screen mesh pattern. Experimental specimens are divided Into 4groups. 1) Air-vent attached pattern with high casting pressure(coil spring type centrifugal casting machine 2.5turn). 2) Air-vent attached pattern with low casting pressure(coil spring type centrifugal casting machine 1.5turn). 3) Air vent non attached pattern with high casting pressure(coil spring type centrifugal casting machine 2.5turn). 4) Air-vent non attached pattern with low casting pressure(coil spring type centrifrgal casting machine 1.5turn). The main results are as follows : 1) The condition of high casting pressure no.1, no.3 were showed perfect castability. 2) The condition of low-casting pressure, there is a wide difference between no.2, no.4 group. Castability of no.2 group preferable to no.4 group(p<0.001). 3) Low casting pressure and complex shape cause the low-castability. So it is recommanded that use of air-vent in case of complex shaped wax pattern with low easting pressure.

  • PDF

An Analysis on the Major Parameter and the Relations of Pressure Difference Effect of Leakage Area in the Smoke-Control Zone (제연구역의 주요 매개 변수 및 누설 면적 변화를 고려한 차압 형성 관계 분석)

  • You, Woo Jun;Ko, Gwon Hyun;SaKong, Seong Ho;Nam, Jun-Seok;Ryou, Hong-Sun
    • Fire Science and Engineering
    • /
    • v.27 no.1
    • /
    • pp.20-25
    • /
    • 2013
  • This study is experimentally analyzed to extract the major parameters affecting the performance of the smoke-control system and the relations of pressure difference between vestibule and supply air pressure zone effect of supply mass flow rate and leakage area in the smoke-control zone. To obtain this, the mock-up building of three-story scale with a total of 10 compartments was constructed, and several apparatus were also installed for in-situ measurement of the ventilation flow rate, pressure difference between compartments, smoke defensive air velocity, the opening-closing force of door, etc. This article show that pressure difference in the smoke-control zone is significantly related with leakage area of vestibule in low pressure region, leakage area of supply air pressure in over pressure region and both of them in pressure control region when the pressure control range of damper is 45 Pa~55 Pa.

Experimental Investigation for the Characteristics of Energy Separation of a Vortex Tube at Various Inlet and outlet Pressure Conditions (입.출구의 압력조건에 따른 보텍스 튜브의 에너지분리 특성에 관한 실험적 고찰)

  • 유갑종;김정수;최인수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.11
    • /
    • pp.1149-1155
    • /
    • 2001
  • The experimental investigation on energy separation in a vortex tube has been carried out to sow the effect of inlet and outlet pressures with various working fluids(air,$O_2,\;and\; CO_2$). Those outlet pressure means cold outlet and hot outlet pressure which were set equally. The results showed that the total enthalpy variation became a maximum when the mass flow rate at the cold outlet was a half of the total mass flow rate in the vortex tube (y=0.5). The total enthalpy variation was quite affected by the pressure difference between the inlet and outlet of vortex tube when the ratio of the inlet pressure to the cold outlet pressure remained constant. Although specific enthalpy differences between the inlet and the outlet (both cold and hot outlet) did not noticeably vary with the pressure difference, the specific enthalpy difference between the inlet and cold outlet was dominantly affected by physical properties of working gases.

  • PDF

The Design of Vehicle for Air tightness to Pressure wave of High Speed Train (고속전철의 압력파 영향에 대한 차체 기밀설계)

  • 박광복;김현철
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.83-94
    • /
    • 1999
  • This study is about design of vehicle for air tightness to pressure waves of high speed train. When the train runs to high speed over 300km/h, the comfort of passenger come down due to difference pressure between inside and outside of passenger room. The car-body was carried out the design of air-tightness, and the analysis of inside pressure of vehicle in tunnel by TG_TUN of ALSTOM Co. The result of analysis should be used the design of air pressurized system and car-body of G7 high speed train project.

  • PDF

Study on Numerical Model of Leakage Flow at Gap between Compartments in a Building (건축물 구획실간 틈새에서의 누설유동에 대한 수치모델 연구)

  • Kim, Jung-Yup;Kim, Ji-Seok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.10
    • /
    • pp.562-567
    • /
    • 2013
  • 1D-numerical analysis of the network algorithm with the orifice equation for the relationship between pressure difference and flowrate has been mostly used to analyse leakage flow at the gap. In this study, a 3D-numerical method applying momentum loss model to the gap region in the computational domain is represented to reflect effectively the effect of leakage flow by determining the proportion of pressure difference to air passage velocity. While the 3D-numerical method is verified through the computation of the two compartments model, the numerical analysis of the stack effect in a building stairway is performed. As the temperature of air outside drops, the pressure in the upper stairway and leakage flowrate through the gap in the door rise. The change of gap area does not have an effect on pressure in the stairway for the analysis conditions.

The Tense-Lax Question and Intraoral Air Pressure in English Stops

  • Kim, Dae-Won
    • Speech Sciences
    • /
    • v.9 no.4
    • /
    • pp.113-130
    • /
    • 2002
  • Measurements were made of pressure rise time (PoRT), voice cessation time, flattened peak intraoral air pressure (Po), pressure static time (PoST), pressure-fall time and the duration of oral closure as four English speakers uttered isolated nonsense $V_{1}CV_{2}$ words containing /b/ and /p/ ($V_{1}=V_{2}$ and the V was /$\alpha$/), with stress on either $V_{1}orV_{2}$ alternately. The hypothesis tested was: The tense stop consonant. will be characterized either by a higher Po or a longer PoST, and/or by both against lax. Findings: (1) PoRT was significantly greater in /b/ than /p/, (2) the voiceless stop /p/ produced generally greater mean Po, averaged across five tokens, than its voiced counterpart /b/, but statistically insignificant, and (3) altogether, across stress, tokens and subjects, the difference in the calculated pressure static time (PoSTc), i.e., PoST + PoRT, between /p/ and /b/ was highly significant (p $\leq$ 0.003). Although further investigations remain to be taken, the results strongly supported the linguistic hypothesis of tense-lax distinction, with /b/ being lax and /p/ tense. Airflow resistance at the glottis and supraglottal air volume are assumed to be responsible for much of difference in PoRT between /p/ and /b/. The PoSTc reflecting, although indirectly, the respiratory efforts during the oral closure of a stop, was a convincing phonetic parameter of the consonantal tenseness based on respiratory efforts. The effects of stress on Po and PoSTc were inconsistent, and the shorter PoRT than consonantal constriction interval was always accompanied by Po and PoST.

  • PDF

An Analysis of Attenuation Effect of Pressure Head Using an Air Chamber

  • Lee, Jae-Soo;Yoon, Yong-Nam;Kim, Joong-Hoon
    • Korean Journal of Hydrosciences
    • /
    • v.7
    • /
    • pp.77-86
    • /
    • 1996
  • An air chamber is design to keep the pressure from exceeding a predetermined value, or to prevent low pressures and colum separation. Therefore, it can be used to protect against rapid transients in a pipe system following abrupt pump stoppage. In this research, an air chmber was applied to a hypthetical pipe system to analyze attenuation effect of pressure head for different air volumes, locations, chamber areas, coefficients of orifice loss and pollytropic exponents. With an increase of air volume, the maximum pressure head at pump site is decreased and the minimum pressure head is imcreased. For different locations and areas of the chamber, the attenuation effects do not show much difference. Also, as the orifice loss coefficient increases, the maximum pressure head is decreased. For different polytropic exponents, isothermal process shows lower maximum pressure head than that of the adiabatic process.

  • PDF