• Title/Summary/Keyword: difference equations

검색결과 1,396건 처리시간 0.027초

EXISTENCE AND UNIQUENESS RESULTS FOR SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH INITIAL TIME DIFFERENCE

  • Nanware, J.A.;Dawkar, B.D.;Panchal, M.S.
    • Nonlinear Functional Analysis and Applications
    • /
    • 제26권5호
    • /
    • pp.1035-1044
    • /
    • 2021
  • Existence and uniqueness results for solutions of system of Riemann-Liouville (R-L) fractional differential equations with initial time difference are obtained. Monotone technique is developed to obtain existence and uniqueness of solutions of system of R-L fractional differential equations with initial time difference.

SOME RESULTS RELATED TO COMPLEX DIFFERENTIAL-DIFFERENCE EQUATIONS OF CERTAIN TYPES

  • Liu, Kai;Dong, Xianjing
    • 대한수학회보
    • /
    • 제51권5호
    • /
    • pp.1453-1467
    • /
    • 2014
  • In this paper, we consider the growth and existence of solutions of differential-difference equations of certain types. We also consider the differential-difference analogues of Br$\ddot{u}$ck conjecture and give a short proof on a theorem given by Li, Yang and Yi [18]. Our additional purpose is to explore the similarity or difference on some problems in differential, difference and differential-difference fields.

FINITE LOGARITHMIC ORDER SOLUTIONS OF LINEAR q-DIFFERENCE EQUATIONS

  • Wen, Zhi-Tao
    • 대한수학회보
    • /
    • 제51권1호
    • /
    • pp.83-98
    • /
    • 2014
  • During the last decade, several papers have focused on linear q-difference equations of the form ${\sum}^n_{j=0}a_j(z)f(q^jz)=a_{n+1}(z)$ with entire or meromorphic coefficients. A tool for studying these equations is a q-difference analogue of the lemma on the logarithmic derivative, valid for meromorphic functions of finite logarithmic order ${\rho}_{log}$. It is shown, under certain assumptions, that ${\rho}_{log}(f)$ = max${{\rho}_{log}(a_j)}$ + 1. Moreover, it is illustrated that a q-Casorati determinant plays a similar role in the theory of linear q-difference equations as a Wronskian determinant in the theory of linear differential equations. As a consequence of the main results, it follows that the q-gamma function and the q-exponential functions all have logarithmic order two.

Stability Criterion for Volterra Type Delay Difference Equations Including a Generalized Difference Operator

  • Gevgesoglu, Murat;Bolat, Yasar
    • Kyungpook Mathematical Journal
    • /
    • 제60권1호
    • /
    • pp.163-175
    • /
    • 2020
  • The stability of a class of Volterra-type difference equations that include a generalized difference operator ∆a is investigated using Krasnoselskii's fixed point theorem and some results are obtained. In addition, some examples are given to illustrate our theoretical results.

OSCILLATION OF HIGHER ORDER STRONGLY SUPERLINEAR AND STRONGLY SUBLINEAR DIFFERENCE EQUATIONS

  • Grace, Said R.;Han, Zhenlai;Li, Xinhui
    • Journal of applied mathematics & informatics
    • /
    • 제32권3_4호
    • /
    • pp.455-464
    • /
    • 2014
  • We establish some new criteria for the oscillation of mth order nonlinear difference equations. We study the case of strongly superlinear and the case of strongly sublinear equations subject to various conditions. We also present a sufficient condition for every solution to be asymptotic at ${\infty}$ to a factorial expression $(t)^{(m-1)}$.

ENTIRE SOLUTIONS OF DIFFERENTIAL-DIFFERENCE EQUATION AND FERMAT TYPE q-DIFFERENCE DIFFERENTIAL EQUATIONS

  • CHEN, MIN FENG;GAO, ZONG SHENG
    • 대한수학회논문집
    • /
    • 제30권4호
    • /
    • pp.447-456
    • /
    • 2015
  • In this paper, we investigate the differential-difference equation $(f(z+c)-f(z))^2+P(z)^2(f^{(k)}(z))^2=Q(z)$, where P(z), Q(z) are nonzero polynomials. In addition, we also investigate Fermat type q-difference differential equations $f(qz)^2+(f^{(k)}(z))^2=1$ and $(f(qz)-f(z))^2+(f^{(k)}(z))^2=1$. If the above equations admit a transcendental entire solution of finite order, then we can obtain the precise expression of the solution.

OSCILLATION CRITERIA OF SECOND ORDER NEUTRAL DIFFERENCE EQUATIONS

  • Zhang, Zhenguo;Lv, Xiaojing;Yu, Tian
    • Journal of applied mathematics & informatics
    • /
    • 제13권1_2호
    • /
    • pp.125-138
    • /
    • 2003
  • Some Riccati type difference inequalities are established for the second-order nonlinear difference equations with negative neutral term $\Delta$(a(n)$\Delta$(x(n) - px(n-$\tau$))) + f(n, x($\sigma$(n))) = 0 using these inequalities we obtain some oscillation criteria for the above equation.

OSCILLATION OF SECOND ORDER UNSTABLE NEUTRAL DIFFERENCE EQUATIONS WITH CONTINUOUS ARGUMENTS

  • TIAN YU;ZHANG ZHENGUO;GE WEIGAO
    • Journal of applied mathematics & informatics
    • /
    • 제20권1_2호
    • /
    • pp.355-367
    • /
    • 2006
  • In this paper, we consider the oscillation second order unstable neutral difference equations with continuous arguments $\Delta^2_{/tau}(\chi(t)-p\chi(t-\sigma))=f(t,\chi(g(t)))$ and obtain some criteria for the bounded solutions of this equation to be oscillatory.