• Title/Summary/Keyword: difference equation

Search Result 2,172, Processing Time 0.025 seconds

Oscillation of Linear Second Order Delay Dynamic Equations on Time Scales

  • Agwo, Hassan Ahmed
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.3
    • /
    • pp.425-438
    • /
    • 2007
  • In this paper, we establish some new oscillation criteria for a second-order delay dynamic equation $$u^{{\Delta}{\Delta}}(t)+p(t)u(\tau(t))=0$$ on a time scale $\mathbb{T}$. The results can be applied on differential equations when $\mathbb{T}=\mathbb{R}$, delay difference equations when $\mathbb{T}=\mathbb{N}$ and for delay $q$-difference equations when $\mathbb{T}=q^{\mathbb{N}}$ for q > 1.

  • PDF

Finite Difference Analysis of Safe Load and Critical Time in a Four-Parameter Viscoelastic Column

  • Shin, Jong-Gye;Lee, Jae-Yeul
    • Journal of Hydrospace Technology
    • /
    • v.2 no.2
    • /
    • pp.80-87
    • /
    • 1996
  • A creep-buckling analysis is studied for a simply-supported viscoelastic column. The fluid-type four-parameter model is employed because of its general applicability to creep materials. Using the imperfection-based incremental approach, a nonlinear load deflection equation is derived. Safe load and critical (or life) time which characterize the stability of the viscoelastic column are obtained mathematically and interpreted physically. A finite difference algorithm is applied to solve the second-order differential equation of the viscoelastic stress-strain relation. Numerical calculation has been made and discussed far a SUS316 stainless steel column.

  • PDF

Asymptotic Results for a Class of Fourth Order Quasilinear Difference Equations

  • Thandapani, Ethiraju;Pandian, Subbiah;Dhanasekaran, Rajamannar
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.4
    • /
    • pp.477-488
    • /
    • 2006
  • In this paper, the authors first classify all nonoscillatory solutions of equation (1) $${\Delta}^2|{\Delta}^2{_{y_n}}|^{{\alpha}-1}{\Delta}^2{_{y_n}}+q_n|y_{{\sigma}(n)}|^{{\beta}-1}y_{{\sigma}(n)}=o,\;n{\in}\mathbb{N}$$ into six disjoint classes according to their asymptotic behavior, and then they obtain necessary and sufficient conditions for the existence of solutions in these classes. Examples are inserted to illustrate the results.

  • PDF

ON THE LINEAR EQUIVALENCE OF SEQUENCES IN HILBERT SPACES

  • TARIQ QAWASMEH;RAED HATAMLEH;BELAL BATIHA;AHMED SALEM HEILAT
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.2
    • /
    • pp.237-243
    • /
    • 2024
  • A similarity transformation of a solution of the Cauchy problem for the linear difference equation in Hilbert space has been studied. In this manuscript, we obtain necessary and sufficient conditions for linear equivalence of the discrete semigroup of operators, generated by the solution of the difference equation utilizing four Canonical semigroups.

A NOTE ON THE APPROXIMATE SOLUTIONS TO STOCHASTIC DIFFERENTIAL DELAY EQUATION

  • KIM, YOUNG-HO;PARK, CHAN-HO;BAE, MUN-JIN
    • Journal of applied mathematics & informatics
    • /
    • v.34 no.5_6
    • /
    • pp.421-434
    • /
    • 2016
  • The main aim of this paper is to discuss the difference between the Euler-Maruyama's approximate solutions and the accurate solution to stochastic differential delay equation. To make the theory more understandable, we impose the non-uniform Lipschitz condition and weakened linear growth condition. Furthermore, we give the pth moment continuous of the approximate solution for the delay equation.

Control of an stochastic nonlinear system by the method of dynamic programming

  • Choi, Wan-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.156-161
    • /
    • 1994
  • In this paper, we consider an optimal control problem of a nonlinear stochastic system. Dynamic programming approach is employed for the formulation of a stochastic optimal control problem. As an optimality condition, dynamic programming equation so called the Bellman equation is obtained, which seldom yields an analytical solution, even very difficult to solve numerically. We obtain the numerical solution of the Bellman equation using an algorithm based on the finite difference approximation and the contraction mapping method. Optimal controls are constructed through the solution process of the Bellman equation. We also construct a test case in order to investigate the actual performance of the algorithm.

  • PDF

A GENERALIZED ADDITIVE-QUARTIC FUNCTIONAL EQUATION AND ITS STABILITY

  • HENGKRAWIT, CHARINTHIP;THANYACHAROEN, ANURK
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.6
    • /
    • pp.1759-1776
    • /
    • 2015
  • We determine the general solution of the generalized additive-quartic functional equation f(x + 3y) + f(x - 3y) + f(x + 2y) + f(x - 2y) + 22f(x) - 13 [f(x + y) + f(x - y)] + 24f(y) - 12f(2y) = 0 without assuming any regularity conditions on the unknown function f : ${\mathbb{R}}{\rightarrow}{\mathbb{R}}$ and its stability is investigated.

Accuracy of dietary reference intake predictive equation for estimated energy requirements in female tennis athletes and non-athlete college students: comparison with the doubly labeled water method

  • Ndahimana, Didace;Lee, Sun-Hee;Kim, Ye-Jin;Son, Hee-Ryoung;Ishikawa-Takata, Kazuko;Park, Jonghoon;Kim, Eun-Kyung
    • Nutrition Research and Practice
    • /
    • v.11 no.1
    • /
    • pp.51-56
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: The purpose of this study was to assess the accuracy of a dietary reference intake (DRI) predictive equation for estimated energy requirements (EER) in female college tennis athletes and non-athlete students using doubly labeled water (DLW) as a reference method. MATERIALS/METHODS: Fifteen female college students, including eight tennis athletes and seven non-athlete subjects (aged between 19 to 24 years), were involved in the study. Subjects' total energy expenditure (TEE) was measured by the DLW method, and EER were calculated using the DRI predictive equation. The accuracy of this equation was assessed by comparing the EER calculated using the DRI predictive equation ($EER_{DRI}$) and TEE measured by the DLW method ($TEE_{DLW}$) based on calculation of percentage difference mean and percentage of accurate prediction. The agreement between the two methods was assessed by the Bland-Altman method. RESULTS: The percentage difference mean between the methods was -1.1% in athletes and 1.8% in non-athlete subjects, whereas the percentage of accurate prediction was 37.5% and 85.7%, respectively. In the case of athletic subjects, the DRI predictive equation showed a clear bias negatively proportional to the subjects' TEE. CONCLUSIONS: The results from this study suggest that the DRI predictive equation could be used to obtain EER in non-athlete female college students at a group level. However, this equation would be difficult to use in the case of athletes at the group and individual levels. The development of a new and more appropriate equation for the prediction of energy expenditure in athletes is proposed.

Dynamic Analysis of MLS Difference Method using First Order Differential Approximation (1차 미분 근사를 이용한 MLS차분법의 동적해석)

  • Kim, Kyeong-Hwan;Yoon, Young-Cheol;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.331-337
    • /
    • 2018
  • This paper presents dynamic algorithm of the MLS(moving least squares) difference method using first order differential Approximation. The governing equations are only discretized by the first order MLS derivative approximation. The system equation consists of an assembly of the approximate function, so the shape of system equation is similar to FEM(finite element method). The CDM(central difference method) is used for time integration of dynamic equilibrium equation. The natural frequency analyses of the MLS difference method and FEM are performed, and two analysis results are compared. Also, the accuracy of the proposed numerical method is verified by displaying the dynamic analysis results together with the results by the existing second order differential approximation. In the process of assembling the first order MLS derivative approximation, the oscillation error was suppressed and the stress distribution was interpreted as relatively uniform.