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Abstract. In this paper, the authors first classify all nonoscillatory solutions of equation

(1) ∆2 �|∆2yn|α−1∆2yn

�
+ qn|yσ(n)|β−1yσ(n) = 0, n ∈ N

into six disjoint classes according to their asymptotic behavior, and then they obtain

necessary and sufficient conditions for the existence of solutions in these classes. Examples

are inserted to illustrate the results.

1. Introduction

Consider the fourth order quasilinear difference equation

(1) ∆2
(|∆2yn|α−1∆2yn

)
+ qn|yσ(n)|β−1yσ(n) = 0, n ∈ N,

where N = {0, 1, 2, 3, · · · }, α and β are positive constants ≥ 1; {qn} is a nonnegative
real sequence and {σ (n)} is a positive sequence of integers such that σ (n) →∞ as
n →∞.

By a solution of equation (1), we mean a real sequence {yn} such that {yn}
defined for all n ∈ N and satisfies equation (1) for all sufficiently large n. A non-
trivial solution {yn} of equation (1) is said to be oscillatory if it is neither eventually
positive nor eventually negative, and nonoscillatory otherwise.

Determining asymptotic behavior of difference equations has received a great
deal of attention in the last few years. See, for example, the monographs by Agarwal
[1], Agarwal and Wong [2], Kocic and Ladas [6] and the references cited therein.
Compared to second order difference equations, the study of higher order equations,
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and in particular fourth order equation, has received considerably less attention even
though such equations appear in the problem related to bending of beams (see, for
example [3], [8], [9] and the references cited therein). Further an important special
case of fourth order difference equations is the discrete version of the Schrödinger
equation. This motivated our interest in studying the asymptotic behavior of solu-
tions of equation (1).

In [5], [7], [10], [11], [12], the authors considered equation of type (1) and clas-
sified all nonoscillatory solutions of such equations into two types and obtained
criteria for the existence of solution in these types. In this paper, we first classify
all nonoscillatory solutions of equation (1) into six disjoint classes according to their
asymptotic behavior, and then obtain necessary and sufficient conditions for the ex-
istence of solutions in these classes. Hence the results obtained in this paper gives
a more detailed information on the asymptotic behavior of nonoscillatory solutions
of equation (1). Examples are inserted to illustrate the results.

2. Nonoscillation Theorems

In this section, we study in detail the structure of the set of all possible nonoscil-
latory solutions of equation (1). It suffices to restrict our attention to eventually
positive solutions of equation (1), since if {yn} is a solution of equation (1), then so
is {−yn}. Let {yn} be one such solution of equation (1). Then {yn} satisfies (see
[5]) either

(I) ∆yn > 0, ∆2yn > 0, ∆
(∣∣∆2yn

∣∣α−1 ∆2yn

)
> 0 for all large n

or
(II) ∆yn > 0, ∆2yn < 0, ∆

(∣∣∆2yn

∣∣α−1 ∆2yn

)
> 0 for all large n.

From the above, it is easy to see that {yn}, {∆yn},
{
∆2yn

}
and ∆

(∣∣∆2yn

∣∣α−1 ∆2yn

)

are tend to finite or infinite as n →∞.
Let lim

n→∞
∆iyn = ηi, i = 0, 1, 2 and lim

n→∞
∆

(∣∣∆2yn

∣∣α−1 ∆2yn

)
= η3 . It is clear

from equation (1) that η3 is a finite nonnegative number.
If {yn} satisfies Case (I), then the values ηi, i = 0, 1, 2, 3 falls into one of the

following three cases:

(c1) η0 = η1 = η2 = ∞, η3 ∈ (0,∞) ;

(c2) η0 = η1 = η2 = ∞, η3 = 0;

(c3) η0 = η1 = ∞, η2 ∈ (0,∞) , η3 = 0.

If {yn} satisfies Case (II), then the values ηi, i = 0, 1, 2, 3 falls into one of the
following three cases:

(c4) η0 = ∞, η1 ∈ (0,∞) , η2 = η3 = 0;

(c5) η0 = ∞, η1 = η2 = η3 = 0;

(c6) η0 ∈ (0,∞) , η1 = η2 = η3 = 0.
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Equivalent expressions for these six classes of positive solutions of equation (1)
are as follows:

(c1) lim
n→∞

yn

n2+ 1
α

= constant > 0;

(c2) lim
n→∞

yn

n2+ 1
α

= 0, lim
n→∞

yn

n2 = ∞;

(c3) lim
n→∞

yn

n2 = constant > 0;

(c4) lim
n→∞

yn

n = constant > 0;

(c5) lim
n→∞

yn

n = 0; lim
n→∞

yn = ∞;

(c6) lim
n→∞

yn = constant > 0.

Next we obtain necessary and sufficient conditions for the existence of positive
solutions of the four types (c1), (c3) , (c4) and (c6) of equation (1).

Theorem 1. The equation (1) has a positive solution of type (c1) if and only if

(2)
∞∑

n=n0

(σ(n))(2+
1
α )β

qn < ∞.

Proof. Assume equation (1) has a positive solution {yn} of type (c1). Then summing
(1) from n to ∞, we have

(3) ∆
(∣∣∆2yn

∣∣α−1
∆2yn

)
= η3 +

∞∑
s=n

qsy
β
σ(s),

for n ≥ n0. If n0 is sufficiently large, (3) implies that
∞∑

n=n0

qnyβ
σ(n) < ∞.

This together with the asymptotic relation lim
n→∞

yn

n2+ 1
α

= constant > 0 shows that

condition (2) is satisfied.
Suppose now that (2) holds. Let k > 0 be any given constant. Choose an

integer N > n0 > 0 large enough so that
(

α2

(α + 1) (2α + 1)

)β ∞∑

n=N

(σ(n))(2+
1
α )β

qn ≤ (2k)α − kα

(2k)β
.

Let N0 = min
{

N, inf
n≥N

σ (n)
}

, and define

G (n,N) =





n−1∑
s=N

(n− s− 1) (s−N)
1
α , n > N,

0, N0 ≤ n ≤ N.
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Consider the Banach space B of all real sequences y = {yn}, n > N0 with the
sup-norm ‖y‖ = sup

n>N0

|yn|. Let S be the subset of B defined by

S = {y ∈ B : kG (n,N) ≤ yn ≤ 2kG (n,N) , n > N0} .

Clearly, S is a nonempty, bounded, closed and convex subset of B.We define the
partial ordering on B in the usual sense, that is x ≤ y means xn ≤ yn for all n ≥ N.
Then, for every subset A of S, both sup A and inf A exists in S.

Define the operator T : S → B by

(4) (T y)n =





n−1∑
s=N

(n− s− 1)

[
s−1∑
t=N

(
kα +

∞∑
j=t

qjy
β
σ(j)

)] 1
α

, n ≥ N + 1,

0, N0 6 n 6 N.

If yn ∈ S, then for n ≥ N

(T y)n > k

n−1∑

s=N

(n− s− 1) (s−N)
1
α = kG (n,N)

and

(T y)n 6
n−1∑

s=N

(n− s− 1)




s−1∑

t=N


kα +

∞∑

j=t

qj (2kG (σ (j) , N))β







1
α

6
n−1∑

s=N

(n− s− 1)




s−1∑

t=N


kα +

(
2kα2

(α + 1) (2α + 1)

)β ∞∑

j=t

qjσ (j)(2+
1
α )β







1
α

6 2k

n−1∑

s=N

(n− s− 1) (s−N)
1
α = 2kG (n, N)

and hence T y ∈ S. Thus, T maps S into itself. Clearly T is increasing. Therefore,
by Knaster-Tarski fixed point theorem, we conclude that there exists y ∈ S such
that T y = y. That is, {yn} is a positive solution of equation (1). From (4), we see
that lim

n→∞
∆

((
∆2yn

)α)
= kα > 0 and hence {yn} is a desired solution of type (c1).

This completes the proof. ¤

Theorem 2. Equation (1) has a positive solution of type (c3) if and only if

(5)
∞∑

n=n0

n (σ(n))2β
qn < ∞.
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Proof. Assume equation (1) has a positive solution {yn} of type (c3). Summing
equation (3) from n to ∞ and then rearranging, we have

∞∑

n=N

(n−N + 1) qnyβ
σ(n) < ∞,

where N is chosen sufficiently large. Since lim
n→∞

yn

n2 = constant > 0, we see that

condition (5) holds.
Now, assume that condition (5) holds. Let k > 0 be an arbitrary fixed constant

and choose an integer N > n0 > 0 so large that
∞∑

n=N

n (σ (n))2β
qn 6 [(2k)α − kα]

kβ
.

Let N0 = min
{

N, inf
n≥N

σ (n)
}

and consider the Banach space B of all real sequences

y = {yn}, n > N0 with the sup-norm ‖y‖ = sup
n>N0

{
|yn|
n3

}
. Let S be the subset of B

defined by

S =
{

y ∈ B :
k

2
(n−N)2+ 6 yn 6 k (n−N)2+ , n > N0

}
,

where (n−N)2+ = (n−N)2 if n > N and (n−N)2+ = 0 if N0 ≤ n ≤ N.
Clearly, S is a closed ,bounded,and convex subset of B.We define an operator

T : S → B as follows:

(6) (T y)n =





n−1∑
s=N

(n− s− 1)
[
(2k)α −

∞∑
t=s

(t− s + 1) qty
β
σ(t)

] 1
α

, n > N + 1,

0, N0 6 n 6 N.

We first show that T S ⊂ S. Indeed, if y ∈ S it is clear from (6) that (T y)n ≤
k(n−N)2. Furthermore for n > N , we have

(T y)n >
n−1∑

s=N

(n− s− 1)

[
(2k)α − kβ

∞∑
t=s

(t− s + 1) qt (σ (t)−N)β

] 1
α

>
∞∑

s=N

(n− s− 1)
[
(2k)α − kβ [(2k)α − kα]

kβ

] 1
α

> k

2
(n−N)2 .

Thus, T maps S into itself. Next, we prove T is continuous. Let yi = {yi
n} be a

sequence in S such that lim
i→∞

||yi − y|| = 0. Because S is closed, y ∈ S. Then from

(6), one can easily prove that lim
i→∞

|| (T yi
)
n
− (T y)n || = 0 and so T is continuous.
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Finally, in order to apply Schauder fixed point theorem, we need to show that
T S is relatively compact. In view of a result of Cheng and Patula [4] it suffices to
show that T S is uniformly Cauchy. To see this, we have to show that, given ε > 0,
there is an integer N1 > N, such that m > n > N1,∣∣∣∣

(Ty)m

m3
− (Ty)n

n3

∣∣∣∣ < ε

for any y ∈ S. Indeed , by (6) we have
∣∣∣∣
(Ty)m

m3
− (Ty)n

n3

∣∣∣∣ 6 2k

n−N
→ 0.

Therefore, by Schauder fixed point theorem, T has a fixed element y in S, that is,

(7) yn =
n−1∑

s=N

(n− s− 1)

[
(2k)α −

∞∑
t=s

(t− s + 1) qty
β
σ(t)

] 1
α

, n > N.

From (7), we have see that {yn} is a positive solution of equation (1) for all large n
with the property that lim

n→∞
∆2yn = 2k > 0. Thus, {yn} is a type (c3) solution of

equation (1). This completes the proof. ¤

Theorem 3. Equation (1) has a positive solution of type (c4) if and only if

(8)
∞∑

n=n0

[ ∞∑
s=n

(s− n + 1) qs (σ (s))β

] 1
α

< ∞.

Proof. To prove the necessary part of the theorem it suffices to observe that a
positive solution {yn} of type (c4) satisfies lim

n→∞
yn

n = constant > 0 and

∞∑

n=N

[ ∞∑
s=n

(s− n + 1) qsy
β
σ(s)

] 1
α

< ∞.

To prove the sufficient part, assume (8) holds, and for any fixed constant k > 0
choose an integer N > n0 > 0 such that

∞∑

n=N

[ ∞∑
s=n

(s− n + 1) (σ (s))β
qs

] 1
α

< 2−
β
α k1− β

α .

Let N0 = min
{

N, inf
n≥N

σ (n)
}

, and consider the Banach space B of all real se-

quences y = {yn} , n > N0 with the sup-norm ‖y‖ = sup
n>N0

{
|yn|
n

}
. Consider S ⊂ B

and a mapping T : S → B defined by

S = {y ∈ B : kn 6 yn 6 2kn, n > N0}
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and

(Ty)n =





kn +
n−1∑
s=N

∞∑
t=s

[
∞∑

j=t

(j − t + 1)qjy
β
σ(j)

] 1
α

, n > N + 1,

kn, N0 6 n 6 N.

Clearly, S is a nonempty, bounded,closed and convex subset of B. We define the
partial ordering on B as in Theorem 1. Then, for every subset A of S, both supA
and inf A exists in S. It can be easily verified that T S ⊂ S and T is an increasing
mapping. Therefore, by Knaster-Tarski fixed point theorem, T has a fixed point
y ∈ S, which gives rise to a positive type (c4) solution of equation (1), since it
satisfies

(9) yn = kn +
n−1∑

s=N

∞∑
t=s



∞∑

j=t

(j − t + 1)qjy
β
σ(j)




1
α

, n > N.

From (9), we have lim
n→∞

∆yn = k. This completes the proof. ¤

Theorem 4. Equation (1) has a positive solution of type (c6) if and only if

(10)
∞∑

n=n0

n

[ ∞∑
s=n

(s− n + 1) qs

] 1
α

< ∞.

Proof. Let {yn} be a type (c6) solution of equation (1). Summing first, equation
(3) with η3 = 0 three times yield

yn = η0 −
∞∑

s=n

(s− n + 1)

[ ∞∑
t=s

(t− s + 1) qty
β
σ(t)

] 1
α

which implies
∞∑

n=N

n

[ ∞∑
s=n

(t− n + 1) qsy
β
σ(s)

] 1
α

< ∞.

Since lim
n→∞

yn = constant > 0, (10) follows immediately from the last inequality.

Suppose now that (10) holds. Let k > 0 be any fixed constant and choose an
integer N > n0 > 0 so large that

∞∑

n=N

n

[ ∞∑
s=n

(s− n + 1) qs

] 1
α

6 1
2
k1− β

α .

Let N0 = min{N, inf
n≥N

σ (n)}, and consider the Banach space B of all real se-

quences y = {yn} , n > N0 with the sup-norm ‖y‖ = sup
n>N0

|yn|. Consider the set
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S ⊂ B and the mapping T : S → B defined by

S =
{

y ∈ B :
k

2
6 yn 6 k, n > N0

}

and

(T y)n =





k −
∞∑

s=n
(s− n + 1)

[ ∞∑
t=s

(t− s + 1) qty
β
σ(t)

] 1
α

n > N + 1,

(T y)N , N0 6 t 6 N.

Then it can be easily verified that T has a fixed point y in S. This fixed point
gives rise to a required positive type (c6) solution of equation (1), since it satisfies

(11) yn = k −
∞∑

s=n

(s− n + 1)

[ ∞∑
t=s

(t− s + 1) qty
β
σ(t)

] 1
α

, n > N.

From (11), we have lim
n→∞

yn = k.This completes the proof. ¤

Next we discuss about the existence of positive solutions of types (c2) and (c5)
of equation (1). We are content with the sufficient conditions for the existence of
positive solutions with “intermediate” growth.

Theorem 5. Equation (1) has a positive solution of type (c2) if

(12)
∞∑

n=n0

(σ (n))(2+
1
α )β

qn < ∞

and

(13)
∞∑

n=n0

n (σ (n))2β
qn = ∞

are hold.

Proof. Choose an integer N ≥ n0 > 0 large enough so that N0 = min{N, inf
n≥N

σ (n)},
and

(14)
∞∑

n=N

(σ (n))(2+
1
α )β

qn <
1

2α+1

(
(α + 1) (2α + 1)

α2

)α

.

Consider the Banach space B of all real sequences y = {yn}, n > N0 with the
sup-norm ‖y‖ = sup

n>N0

{
|yn|
n2

}
. Consider the set S ⊂ B and the mapping T : S → B

defined by

(15) S =
{

y ∈ B :
1

21+ 1
α

(n−N)2+ 6 yn 6 n2+ 1
α , n > N0

}
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and

(16) (T y)n =





n−1∑
s=N

(n− s + 1)

[
1
2 +

s−1∑
t=N

∞∑
j=t

qjy
β
σ(j)

] 1
α

n > N,

0, N0 6 n 6 N.

If y ∈ S, then, using the inequality (A + B)
1
α 6 (2A)

1
α + (2B)

1
α , A > 0, B > 0,

and (16) we have for n ≥ N

(T y)n ≥
1

21+ 1
α

(n−N)2

and

(T y)n 6
n−1∑

s=N

(n− s + 1)


1 +



2

∞∑

j=N

qj (σ (j))(2+
1
α )β





1
α

(s−N)
1
α




6 1
2

n−1∑

s=N

(n− s + 1) +
(α + 1) (2α + 1)

2α2

n−1∑

s=N

(n− s + 1) (s−N)
1
α

6 1
2

(n−N)2 +
1
2

(n−N)2+
1
α 6 n2+ 1

α .

This implies that T maps S into itself.
Since it is easy to verify that all conditions of Knaster-Tarski fixed point theorem

are satisfied, there exists an element y ∈ S such that T y = y, which satisfies the
equation

(17) yn =
n−1∑

s=N

(n− s + 1)


1

2
+

s−1∑

t=N

∞∑

j=t

qjy
β
σ(j)




1
α

, n > N.

From (17), we have

∆2yn =


1

2
+

n−1∑

t=N

∞∑

j=t

qjy
β
σ(j)




1
α

>


1

2
+

n−1∑

t=N

∞∑

j=t

qj

(σ (j)−N)2β
+

2(1+ 1
α )β




1
α

>
[

1
2

+
1

2(1+ 1
α )β

n−1∑

t=N

(t−N + 1) qt (σ (t)−N)2β

] 1
α

.
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Now (13) implies that {yn} satisfies lim
n→∞

∆2yn = ∞. This completes the proof. ¤

Theorem 6. Equation (1) has a positive solution of type (c5) if

(18)
∞∑

n=n0

( ∞∑
s=n

(s− n + 1) (σ (s))β
qs

) 1
α

< ∞

and

(19)
∞∑

n=n0

n

( ∞∑
s=n

(s− n + 1)qs

) 1
α

= ∞

are hold.

Proof. Let k > 0 be any fixed constant and choose an integer N > n0 > 0 large
enough so that

N0 = min{N, inf
n≥N

σ (n)} ≥ 1

and
∞∑

n=N

( ∞∑
s=n

(s− n + 1) (σ (s))β
qs

) 1
α

< 2−
β
α k1− β

α .

Consider the Banach space B of all real sequences y = {yn} , with the sup-norm
‖y‖ = sup

n>N0

|yn| . Define the set S ⊂ B and the mapping T : S → B by

S = {y ∈ B : k 6 yn 6 2kt, n > N0}
and

(Ty)n =





k +
n−1∑
s=N

∞∑
t=s

(
∞∑

j=t

(j − t + 1) qjy
β
σ(j)

) 1
α

n > N + 1,

k, N0 6 n 6 N.

Then the Knaster-Taraski fixed point theorem can be applied to the existence of a
fixed point y ∈ S of T . This y = {yn} gives a solution of equation (1) for all n ≥ N.
Further

yn > k +
n−1∑

s=N

(s−N + 1)

[ ∞∑
t=s

(t− s + 1) qty
β
σ(t)

] 1
α

> k + k
β
α

n−1∑

s=N

(s−N + 1)

[ ∞∑
t=s

(t− s + 1) qt

] 1
α

, n > N.

Therefore from (19) we see that {yn} satisfies lim
n→∞

yn = ∞. Hence {yn} is a positive

solution of type (c5). ¤
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We conclude this paper with the following example.

Example 1. Consider the difference equation

∆2
(|∆2yn|α−1∆2yn

)
+ n−λ|yσ(n)|β−1yσ(n) = 0 (E1)

where α, β are positive constants, λ is a varying parameter and σ(n) = nγ , γ a
positive integer. It is easy to check that

(i) equation (E1) has a type (c1) solution if and only if λ > 1 +
(
2 + 1

α

)
βγ;

(ii) equation (E1) has a type (c3) solution if and only if λ > 2 + 2βγ;

(iii) equation (E1) has a type (c4) solution if and only if λ > 2 + α + βγ;

(iv) equation (E1) has a type (c6) solution if and only if λ > 2 + 2α.

Further, it follows that equation (E1) has solutions of all types (c1), (c3), (c4) and
(c6) if either

α ≤ βγ and λ > 1 +
(

2 +
1
α

)
βγ

or
α > βγ and λ > 2 + 2α

holds. It is easy to see that for equation (E1) the existence of solutions of types
(c2) and (c4) may be realized only when α > βγ. The conclusions of Theorem 5
and 6 are

(v) equation (E1) has a type (c2) solution if

(20) α > βγ and 1 +
(

2 +
1
α

)
βγ < λ 6 2 + 2βγ;

(vi) equation (E1) has a type (c5) solution if

(21) α > βγ and 2 + α + βγ < λ 6 2 + 2α.

Note that if (20) holds, then equation (E1) has no solutions of types (c3), (c4) and
(c6), and that if (21) holds, then equation (E1) has no solution of type (c6).
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