• Title/Summary/Keyword: dielectric heating materials

Search Result 44, Processing Time 0.021 seconds

Effect oh Heat Treatment on Breakdown Properties in the Joint Interface of Power Cables (전력케이블 절연접속계면의 절연파괴 특성에 미치는 열처리 효과)

  • 이창종;김진수;박강식;한상옥
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.7
    • /
    • pp.502-507
    • /
    • 1998
  • The purpose of this study is to investigate the breakdown properties in joint interface of power cables with heat treatment. The specimens have the structure of XLPE/EPDM interface like the joint of distribution power cable. The breakdown characteristics of the SLPE/EPDM joint were studied with crosslinking by=products. AC breakdown voltages were measured with heat treatment time and interfacial materials and crosslinking by-products as testing factors. This study has shown that crosslinking by-product gases play an important role at the insulation properties of cable joints by heating. The dielectric strength shows the lowest values at 4 hours heat treatment. The AC breakdown strength in the untreated sample was increased with heat treatment time.

  • PDF

A study on the measurement of thermophysical properties of ceramic dielectric materials by unsteady square wave pulse heating method (非定常方形波 펄즈 加熱에 의한 세라믹 誘電體의 熱物性値 測定에 관한 硏究)

  • 차경옥
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.1
    • /
    • pp.152-162
    • /
    • 1988
  • In recent years, attention has been paid to the ceramic material next to metals and plastics due to its inherent characteristics, i.e., good hardness, resistance to heat and corrosion. Recently, various kinds of ceramic dielectrics have been developed for application in industry. It is of prime importance to know the thermophysical properties for wider use of these new materials. However, no extensive effort has been made for systematic measurement of the properties. In this paper, the dielectric constant of five different kinds of ceramic dielectrics ware measured. We call these samples as MgO.SiO$_{2}$, MgTiO$_{3}$, TiO$_{2}$, CaTiO$_{3}$, and BaTiO$_{3}$. Which are currently in commercial sue. The values of thermal dirrusivities, specific heats, and thermal conductivities of these ceramic dielectrics sere measured as a function of temperature ranging from room temperature to about 1300k.

Cure monitoring of a composite matrix by dielectrometry (유전기법을 이용한 복합재료 기지재의 경화 모니터링)

  • 여권주;이상관;엄문광;황병선
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.110-113
    • /
    • 2001
  • Dielectrometry has been used to monitor the cure of epoxy resin using composite matrix. In this investigation, physical properties of the mixture of epoxy resin(LY564), bisphenol A type, and cycloaliphatic hardener(HY 2954) were observed. Activation energy at maximum tan $\delta$ and gelation point was determined during isothermal scanning. From IonViscosity data, it was found that vitrification peak after gelation was appeared on slow heating rate. It was also measured that the duration time for full cure was necessary and it was about 24 hr at $145^{\circ}C$. Therefore, epoxy resin used in this research is required the extended time for full cure.

  • PDF

Power Absorption Measurements during NMR Experiments

  • Felix-Gonzalez, N.;Urbano-Bojorge, A.L.;de Pablo, C. Sanchez-L;Ferro-Llanos, V.;del Pozo-Guerrero, F.;Serrano-Olmedo, J.J.
    • Journal of Magnetics
    • /
    • v.19 no.2
    • /
    • pp.155-160
    • /
    • 2014
  • The heating produced by the absorption of radiofrequency (RF) has been considered a secondary undesirable effect during MRI procedures. In this work, we have measured the power absorbed by distilled water, glycerol and egg-albumin during NMR and non-NMR experiments. The samples are dielectric and examples of different biological materials. The samples were irradiated using the same RF pulse sequence, whilst the magnetic field strength was the variable to be changed in the experiments. The measurements show a smooth increase of the thermal power as the magnetic field grows due to the magnetoresistive effect in the copper antenna, a coil around the probe, which is directly heating the sample. However, in the cases when the magnetic field was the adequate for the NMR to take place, some anomalies in the expected thermal powers were observed: the thermal power was higher in the cases of water and glycerol, and lower in the case of albumin. An ANOVA test demonstrated that the observed differences between the measured power and the expected power are significant.

An Investigation on the Aging Properties of NKN Lead-free Piezoelectric Multi-layer Ceramic Actuators (NKN 무연압전 액추에이터의 신뢰성 연구)

  • Chae, Moon-Soon;Lee, Ku-Tak;Koh, Jung-Hyuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.10
    • /
    • pp.803-806
    • /
    • 2011
  • 1 mol% $Li_2O$ excess $0.9(Na_{0.52}K_{0.48})NbO_3-0.1LiTaO_3$ lead-free piezoelectric multilayer ceramic actuators were investigated to determine their aging properties. To reduce the thermal aging behavior, we applied a rectified unipolar electric field of 5 kV/mm to the specimen to accelerate the electric aging behavior. By employing a rectified unipolar electric field for the piezoelectric actuators, we could remove undesirable heating from the relaxation current in the motion of the ferroelectric domain. To accelerate the aging test, the applied electric fields had a frequency of 900 Hz. To have enough time for charging and discharging, we employed an accurate time constant to design the equivalent circuit model for the aging tester. To extract exact aging behavior, we measured the pseudo-piezoelectric coefficient before and after the aging process. We also measured the electro-mechanical coupling coefficient, the frequency-dependent dielectric permittivity, and the impedance to compare with fresh and aged specimen.

Material characteristics of electrically tunable zirconium oxide thin films

  • Cho, Byeong-Ok;Jane P. Chang
    • Electrical & Electronic Materials
    • /
    • v.16 no.9
    • /
    • pp.62.2-62
    • /
    • 2003
  • Material Characteristics of zirconium oxide thin films obtained by plasma enhanced chemical vapor deposition on p-type Si(100) substrates were investigated to explain their unable electrical properties. The films obtained without heating had polycrystalline nanograins that are mostly of a tetragonal phase under oxygen-deficient plasma conditions but transformed into a monoclinic phase with increasing $O_2$ addition in the plasma. Mostly amorphous bulk $ZrO_2$ with a relatively thicker and smoother interfacial layer was obtained from oxygen-rich plasmas, resulting in a decrease in both the overall dielectric constant and the leakage current density. the interfacial layer formed between the bulk $ZrO_2$ and Si substrate was analyzed to be zirconium silicate, which approached $SiO_2$ as its zirconium content decreased with the increasing gas phase $O_2$ content.

  • PDF

Ferroelectric Properties of the PZT(40/60)/(60/40) Heterolayered Thin Film Prepared by Sol-Gel Method (Sol-Gel법으로 제작한 PZT(40/60)/(60/40) 이종층 박막의 강유전특성)

  • 김경균;정장호;박인길;이성갑;이영희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.83-86
    • /
    • 1998
  • Ferroelectric PZT(40/67)/PZT(60/40)heterolayered thin films were Prepared by the alkoxide-based Sol-Gel method. PZT(40/60) and PZT(60/40) stock solutions were made and spin-coated on the P7Ti/Si02/Si substrate alternately. These PZT(40/60) and PZT(60/40) films were dried at 300$^{\circ}C$ for 30min to remove organic materials and were sintered at 650$^{\circ}C$ for 1 hour to crystalize into a perovskite structure. The coating and heating procedure were repeated 6 times to form heterolayered films. Increasing the number of coating, coercive field was decreased. The relative dielectric constant, loss, remanent polarization and coercive field of the 4-coated PZT heterolayered were 1200, 4.1[%], 30.794[${\mu}$C/㎡] and 147.22[kV/cm], respectively.

  • PDF

Formation of Al2O3 Film by Activated Reactive Evaporation Method (활성화 반응 증발법에 의한 Al2O3 박막 형성)

  • Park, Yong-Gwon;Choi, Jae-Ha
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.5
    • /
    • pp.292-296
    • /
    • 2001
  • In this work, an ultra-high vacuum activated reactive evaporation equipment was built. With reaction of Al and oxygen plasma, $Al_2O_3$ was deposited on the surface of etched Al foil. The chamber was evacuated down to $2{\times}10^{-7}$ torr initially. The Ar and $O_2$ gas introduced into the chamber to maintain $5{\times}10^{-5}$ torr during deposition. Ar gas prevents recombining of the ionized oxygen. Evaporation was maintained by electron beam evaporator continuously. Heating filament and electrode were used in order to generate plasma. The substrate bias of -300V was introduced to accelerate deposition of evaporated Al atoms. The composition and morphology of deposited $Al_2O_3$ films were analyzed by x-ray photoelectron spectroscopy(XPS) and atomic force microscopy (AFM), respectively. The Al oxide was formed on the surface of etched Al foil. According to AFM results, the surface morphology of $Al_2O_3$ film indicates uniform feature. Dielectric characteristic was measured as a function of frequency. Measured withstanding voltage and capacitance were 52V and $24{\mu}F/cm^2$, respectively. The obtained $Al_2O_3$ film shows clean condition without contaminants, which could be adapted to capacitor production.

  • PDF

Activated Carbon-Nickel (II) Oxide Electrodes for Capacitive Deionization Process

  • Gandionco, Karl Adrian;Kim, Jin Won;Ocon, Joey D.;Lee, Jaeyoung
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.552-559
    • /
    • 2020
  • Activated carbon-nickel (II) oxide (AC-NiO) electrodes were studied as materials for the capacitive deionization (CDI) of aqueous sodium chloride solution. AC-NiO electrodes were fabricated through physical mixing and low-temperature heating of precursor materials. The amount of NiO in the electrodes was varied and its effect on the deionization performance was investigated using a single-pass mode CDI setup. The pure activated carbon electrode showed the highest specific surface area among the electrodes. However, the AC-NiO electrode with approximately 10 and 20% of NiO displayed better deionization performance. The addition of a dielectric material like NiO to the carbon material resulted in the enhancement of the electric field, which eventually led to an improved deionization performance. Among all as-prepared electrodes, the AC-NiO electrode with approximately 10% of NiO gave the highest salt adsorption capacity and charge efficiency, which are equal to 7.46 mg/g and 90.1%, respectively. This finding can be attributed to the optimum enhancement of the physical and chemical characteristics of the electrode brought by the addition of the appropriate amount of NiO.

Design, Simulation, and Optimization of a Meander Micro Hotplate for Gas Sensors

  • Souhir, Bedoui;Sami, Gomri;Hekmet, Charfeddine Samet;Abdennaceur, Kachouri
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.4
    • /
    • pp.189-195
    • /
    • 2016
  • Micro Hotplate (MHP) is the key component in micro-sensors, particularly gas sensors. Indeed, in metal oxide gas sensors MOX, micro-heater is used as a hotplate in order to control the temperature of the sensing layer which should be in the requisite temperature range over the heater area, so as to detect the resistive changes as a function of varying concentration of different gases. Hence, their design is a very important aspect. In this paper, we have presented the design and simulation results of a meander micro heater based on three different materials - platinum, titanium and tungsten. The dielectric membrane size is 1.4 mm × 1.6 mm with a thickness of 1.4 μm. Above the membrane, a meander heating film was deposed with a thickness of 100 nm. In order to optimize the geometry, a comparative study by simulating two different heater thicknesses, then two inter track widths has also been presented. Power consumption and temperature distribution were determined in the micro heater´s structure over a supply voltage of 5, 6, and 7 V.