References
- WWAP (United Nations World Water Assessment Programme), The United Nations World Water Development Report 2017 Wastewater: The Untapped Resource. http://unesdoc.unesco.org/images/0024/002471/247153e.pdf (accessed 8 January 2018) (2017).
- United Nations, Department of Economic and Social Affairs, Population Division, World Population Prospects: The 2017 Revision, Key Findings and Advance Tables. Working Paper No. ESA/P/WP/248. http://esa.un.org/unpd/wpp/publications/Files/WPP2017_KeyFindings.pdf (accessed 8 January 2018) (2017).
- H. El-Dessouky and H. Ettouney, Teaching desalination-A multidiscipline engineering science, Heat Transf. Eng., 23, 1-3 (2002).
- T. Humplik, J. Lee, S. C. O'Hern, B. A. Fellman, M. A. Baig, S. F. Hassan, M. A. Atieh, F. Rahman, T. Laoui, R. Karnik, and E. N. Wang, Nanostructured materials for water desalination, Nanotechnology, 22, 292001 (2011). https://doi.org/10.1088/0957-4484/22/29/292001
- J. E. Miller, Sandia National Laboratories Report, SAND2003-0800, Review of water resources and desalination technologies. http://prod.sandia.gov/techlib/access-control.cgi/2003/030800.pdf (accessed 8 January 2018) (2003).
- M. A. Anderson, A. L. Cudero, and J. Palma, Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete?, Electrochim. Acta, 55, 3845-3856 (2010). https://doi.org/10.1016/j.electacta.2010.02.012
- S. Porada, R. Zhao, A. van der Wal, V. Presser, and P. M. Biesheuvel, Review on the science and technology of water desalination by capacitive deionization, Prog. Mater. Sci., 58, 1388-1442 (2013). https://doi.org/10.1016/j.pmatsci.2013.03.005
- M. E. Suss, S. Porada, X. Sun, P. M. Biesheuvel, J. Yoon, and V. Presser, Water desalination via capacitive deionization: What is it and what can we expect from it?, Energy Environ. Sci., 8, 2296-2319 (2015). https://doi.org/10.1039/C5EE00519A
- Y. Oren, Capacitive deionization (CDI) for desalination and water treatment-past, present and future (a review), Desalination, 228, 10-29 (2008). https://doi.org/10.1016/j.desal.2007.08.005
- Z.-H. Huang, Z. Yang, F. Kang, and M. Inagaki, Carbon electrodes for capacitive deionization, J. Mater. Chem. A, 5, 470-496 (2017). https://doi.org/10.1039/C6TA06733F
- A. M. Johnson, A. W. Venolia, R. G. Wilbourne, and J. Newman, The Electrosorb Process for Desalting Water. Research and Development Progress Report No. 516. http://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/PB200056.xhtml (accessed 8 January 2018) (1970).
- G. Wang, B. Qian, Q. Dong, J. Yang, Z. Zhao, and J. Qiu, Highly mesoporous activated carbon electrode for capacitive deionization, Sep. Purif. Technol., 103, 216-221 (2013). https://doi.org/10.1016/j.seppur.2012.10.041
- L H. Li, L. Pan, C. Nie, Y. Liu, and Z. Sun, Reduced graphene oxide and activated carbon composites for capacitive deionization, J. Mater. Chem., 22, 15556 (2012). https://doi.org/10.1039/c2jm32207b
- H. Oda and Y. Nakagawa, Removal of ionic substances from dilute solution using activated carbon electrodes, Carbon, 41, 1037-1047 (2003). https://doi.org/10.1016/S0008-6223(03)00013-7
- I. Villar, S. Roldan, V. Ruiz, M. Granda, C. Blanco, R. Menendez, and R. Santamaria, Capacitive deionization of NaCl solutions with modified activated carbon electrodes, Energy & Fuels, 24, 3329-3333 (2010). https://doi.org/10.1021/ef901453q
- L. Zou, G. Morris, and D. Qi, Using activated carbon electrode in electrosorptive deionisation of brackish water, Desalination, 225, 329-340 (2008). https://doi.org/10.1016/j.desal.2007.07.014
- R. Niu, H. Li, Y. Ma, L. He, and J. Li, An insight into the improved capacitive deionization performance of activated carbon treated by sulfuric acid, Electrochim. Acta, 176, 755-762 (2015). https://doi.org/10.1016/j.electacta.2015.07.012
- K. Laxman, M. T. Z. Myint, R. Khan, T. Pervez, and J. Dutta, Improved desalination by zinc oxide nanorod induced electric field enhancement in capacitive deionization of brackish water, Desalination, 359, 64-70 (2015). https://doi.org/10.1016/j.desal.2014.12.029
- K. Laxman, M. T. Z. Myint, H. Bourdoucen, and J. Dutta, Enhancement in ion adsorption rate and desalination efficiency in a capacitive deionization cell through improved electric field distribution using electrodes composed of activated carbon cloth coated with Zinc oxide nanorods, ACS Appl. Mater. Interfaces, 6, 10113-10120 (2014). https://doi.org/10.1021/am501041t
- K. Laxman, M. T. Z. Myint, R. Khan, T. Pervez, and J. Dutta, Effect of a semiconductor dielectric coating on the salt adsorption capacity of a porous electrode in a capacitive deionization cell, Electrochim. Acta, 166, 329-337 (2015). https://doi.org/10.1016/j.electacta.2015.03.049
- P.-I. Liu, L.-C. Chunga, H. Shaoa, T.-M. Lianga, R.-Y. Hornga, and C.-C. M. Ma, Microwave-assisted ionothermal synthesis of nanostructured anatase titanium dioxide/activated carbon composite as electrode material for capacitive deionization, Electrochim. Acta, 96, 173-179 (2013). https://doi.org/10.1016/j.electacta.2013.02.099
- M.-W. Ryoo, J.-H. Kim, and G. Seo, Role of titania incorporated on activated carbon cloth for capacitive deionization of NaCl solution, J. Colloid Interface Sci., 264, 414-419 (2003). https://doi.org/10.1016/S0021-9797(03)00375-8
- P. Srimuk, M. Zeiger, N. Jackel, A. Tolosa, B. Kruner, S. Fleischmann, I. Grobelsek, M. Aslan, B. Shvartsev, M. E. Suss, and V. Presser, Enhanced performance stability of carbon/titania hybrid electrodes during capacitive deionization of oxygen saturated saline water, Electrochim. Acta, 224, 314-328 (2017). https://doi.org/10.1016/j.electacta.2016.12.060
- Y. Liu, C. Nie, X. Liu, X. Xu, Z. Sun, and L. Pan, Review on carbon-based composite materials for capacitive deionization, RSC Adv., 5, 15205-15225 (2015). https://doi.org/10.1039/C4RA14447C
- B. Li, M. Zheng, H. Xue, and H. Pang, High performance electrochemical capacitor materials focusing on nickel based materials, Inorg. Chem. Front., 3, 175-202 (2016). https://doi.org/10.1039/C5QI00187K
- V. C. Lokhande, A. C. Lokhande, C. D. Lokhande, J. H. Kim, and T. Ji, Supercapacitive composite metal oxide electrodes formed with carbon, metal oxides and conducting polymers, J. Alloys Compd., 682, 381-403 (2016). https://doi.org/10.1016/j.jallcom.2016.04.242
- F. Shi, L. Li, X.-L. Wang, C.-D. Gua, and J.-P. Tu, Metal oxide/hydroxide-based materials for supercapacitors, RSC Adv., 4, 41910-41921 (2014). https://doi.org/10.1039/C4RA06136E
- G. Wang, L. Zhang, and J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chem. Soc. Rev., 41, 797-828 (2012). https://doi.org/10.1039/C1CS15060J
- Y. Wang, J. Guo, T. Wang, J. Shao, D. Wang, and Y.-W. Yang, Mesoporous transition metal oxides for supercapacitors, Nanomaterials, 5, 1667-1689 (2015). https://doi.org/10.3390/nano5041667
-
J. J. Wouters, J. J. Lado, M. I. Tejedor-Tejedora, R. Perez-Roa, and M. A. Anderson, Carbon fiber sheets coated with thin-films of
$SiO_2$ and${\gamma}-Al_2O_3 $ as electrodes in capacitive deionization: Relationship between properties of the oxide films and electrode performance, Electrochim. Acta, 112, 763-773 (2013). https://doi.org/10.1016/j.electacta.2013.08.170 - Y.-H. Liu, H.-C. His, K.-C. Li, K.-C, and C.-H. Hou, Electrodeposited manganese dioxide/activated carbon composite as a high-performance electrode material for capacitive deionization, ACS Sustain. Chem. Eng., 4, 4762-4770 (2016). https://doi.org/10.1021/acssuschemeng.6b00974
- P. M. Biesheuvel, R. Zhao, S. Porada, and A. van der Wal, Theory of membrane capacitive deionization including the effect of the electrode pore space, J. Colloid Interface Sci., 360, 239-248 (2011). https://doi.org/10.1016/j.jcis.2011.04.049
- R. Zhao, P. M. Biesheuvel, H. Miedema, H. Bruning, and A. van der Wal, Charge efficiency: A functional tool to probe the double-layer structure inside of porous electrodes and application in the modeling of capacitive deionization, J. Phys. Chem. Lett., 1, 205-210 (2010). https://doi.org/10.1021/jz900154h
- H. Marsh, F. Rodriguez-Reinoso, Activated Carbon, 1st ed., 153-156, Elsevier Science Ltd (2006).
- J.-B. Lee, K.-K. Park, S.-W. Yoon, P.-Y. Park, K.-I. Park, and C.-W. Lee, Desalination performance of a carbon-based composite electrode, Desalination, 237, 155-161 (2009). https://doi.org/10.1016/j.desal.2007.11.058
-
B. Chen, Y. Wang, Z. Chang, X. Wang, M. Li, X. Liu, L. Zhang, and Y. Wu, Enhanced capacitive desalination of
$MnO_2$ by forming composite with multi-walled carbon nanotubes, RSC Adv., 6, 6730-6736 (2016). https://doi.org/10.1039/C5RA26210K -
A. G. El-Deen, J.-H. Choi, K. A. Khalil, A. A. Almajid, and N. A. M. Barakat, A
$TiO_2$ nanofiber/activated carbon composite as a novel effective electrode material for capacitive deionization of brackish water, RSC Adv., 4, 64634-64642 (2014). https://doi.org/10.1039/C4RA09948F -
A. G. El-Deen, N. A. M. Barakat, and H. Y. Kim, Graphene wrapped
$MnO_2$ -nanostructures as effective and stable electrode materials for capacitive deionization desalination technology, Desalination, 344, 289-298 (2014). https://doi.org/10.1016/j.desal.2014.03.028 -
A. G. El-Deen, N. A. M. Barakat, K. A. Khalil, M. Motlak, and H. Y. Kim, Graphene/
$SnO_2$ nanocomposite as an effective electrode material for saline water desalination using capacitive deionization, Ceram. Int., 40, 14627-14634 (2014). https://doi.org/10.1016/j.ceramint.2014.06.049 -
A. G. El-Deen, J.-H. Choi, C. S. Kim, K. A. Khalil, A. A. Almajid, and N. A. M. Barakat,
$TiO_2$ nanorod-intercalated reduced graphene oxide as high performance electrode material for membrane capacitive deionization, Desalination, 361, 53-64 (2015). https://doi.org/10.1016/j.desal.2015.01.033 -
H. Li, Y. Ma, and R. Niu, Improved capacitive deionization performance by coupling
$TiO_2$ nanoparticles with carbon nanotubes, Sep. Purif. Technol., 171, 93-100 (2016). https://doi.org/10.1016/j.seppur.2016.07.019 -
N. T. Trinh, S. Chung, J. K. Lee, and J. Lee, Development of high quality
$Fe_3O_4/rGO$ composited electrode for low energy water treatment, J. Energy Chem., 25, 354-360 (2016). https://doi.org/10.1016/j.jechem.2016.03.008 - A. S. Yasin, H. O. Mohamed, I. M. A. Mohamed, H. M. Mousa, and N. A. M. Barakat, Enhanced desalination performance of capacitive deionization using zirconium oxide nanoparticles-doped graphene oxide as a novel and effective electrode, Sep. Purif. Technol., 171, 34-43 (2016). https://doi.org/10.1016/j.seppur.2016.07.014
-
A. S. Yasin, H. O. Mohamed, I. M. A. Mohamed, H. M. Mousa, and N. A. M. Barakat,
$ZrO_2$ nanofibers/activated carbon composite as a novel and effective electrode material for the enhancement of capacitive deionization performance, RSC Adv., 7, 4616-4626 (2017). https://doi.org/10.1039/C6RA26039J - K. B. Hatzell, L. Fan, M. Beidaghi, M. Boota, E. Pomerantseva, E. C. Kumbur, and Y. Gogotsi, Composite manganese oxide percolating networks as a suspension electrode for an asymmetric flow capacitor, ACS Appl. Mater. Interfaces, 6, 8886-8893 (2014). https://doi.org/10.1021/am501650q
- C.-L. Yeh, H.-C. Hsi, K.-C. Li, C.-H. Hou, Improved performance in capacitive deionization of activated carbon electrodes with a tunable mesopore and micropore ratio, Desalination, 367, 60-68 (2015). https://doi.org/10.1016/j.desal.2015.03.035
- M. T. Z. Myint and J. Dutta, Fabrication of zinc oxide nanorods modified activated carbon cloth electrode for desalination of brackish water using capacitive deionization approach, Desalination, 305, 24-30 (2012). https://doi.org/10.1016/j.desal.2012.08.010
- Z. H. Huang, M. Wang, L. Wang, and F. Kang, Relation between the charge efficiency of activated carbon fiber and its desalination performance, Langmuir, 28, 5079-5084 (2012). https://doi.org/10.1021/la204690s