DOI QR코드

DOI QR Code

Preparation of Hydrated Liquid Crystalline Vesicle Using Mutual Self-Association between Ceramide and Phospholipid

인지질/세라마이드 혼합물의 상호적 자가회합 특성을 활용한 수화 액정형 베시클 제조

  • Park, Min Seon (Division of chemistry and cosmetics, Dongduk Women's University) ;
  • Choi, Jeong Won (Division of chemistry and cosmetics, Dongduk Women's University) ;
  • Lee, Seol-Hoon (Division of chemistry and cosmetics, Dongduk Women's University) ;
  • Jin, Byung Suk (Division of chemistry and cosmetics, Dongduk Women's University)
  • 박민선 (동덕여자대학교 화학.화장품학부) ;
  • 최정원 (동덕여자대학교 화학.화장품학부) ;
  • 이설훈 (동덕여자대학교 화학.화장품학부) ;
  • 진병석 (동덕여자대학교 화학.화장품학부)
  • Received : 2020.08.14
  • Accepted : 2020.09.10
  • Published : 2020.10.12

Abstract

An attempt was made to prepare hydrated liquid crystalline vesicles by utilizing a mutual self-assembly between phospholipid and ceramide. When an edge activator was added to the mixture of phospholipid and ceramide, it was possible to prepare a vesicle containing a high content of poorly soluble ceramide. In this study, we investigated changes in structural and thermal behaviors of the hydrated liquid crystalline phase according to the mixed composition between phospholipid, ceramide, and sodium deoxycholate. Also, both the droplet size of the vesicles with different composition and stability of the vesicle dispersion solution were observed. From results of the experiments, by increasing the ratio of ceramide up to 70% in the mixture between phospholipid and ceramide, a formulation containing 3.5 wt% of ceramide in the vesicle dispersion solution could be obtained.

인지질과 세라마이드 간 상호적 자가회합 특성을 활용하여 수화 액정형 베시클 제조를 시도하였다. 인지질과 세라마이드의 혼합지질에 에지 액티베이터를 첨가하면 난용성의 세라마이드를 고 함량으로 함유하는 베시클 제조가 가능하였다. 본 연구에서는 인지질, 세라마이드, 에지 액티베이터의 혼합 조성에 따른 수화 액정상의 구조적, 열적 특성 등의 변화를 관측하고, 혼합 조성을 달리하여 만든 베시클의 입자크기 및 베시클 분산액의 안정성을 비교하였다. 실험 결과, 인지질과 세라마이드 간 혼합에서 세라마이드 비율을 최대 70%까지 늘려서, 베시클 분산액 전체 대비 세라마이드를 3.5 wt% 함유되는 제형을 제조할 수 있었다.

Keywords

References

  1. A. W. Fulmer and G. J. Kramer, Stratum corneum lipid abnormalities in surfactant induced dry scaly skin, J. Invest. Derm., 86, 598-602 (1986) https://doi.org/10.1111/1523-1747.ep12355351
  2. R. A. Tupker, J. Pinnagoda, P. J. Coenraads, and J. P. Nater, Susceptibility to irritants: Role of barrier function, skin dryness and history of atopic dermatitis, Brit. J. Derm., 123, 199-205 (1990) https://doi.org/10.1111/j.1365-2133.1990.tb01847.x
  3. E. Kahraman, M. Kaykin, H Sahin Bektay, and S. Gungor, Recent advances on topical application of ceramides to restore barrier function of skin, Cosmetics, 6, 52-63 (2019). https://doi.org/10.3390/cosmetics6030052
  4. A. Nakaune-Iijima, A. Sugishima, G. Omura, Kitaoka, H. T. Tashiro, S. Kageyama, and I. Hatta, Topical treatments with acylceramide dispersions restored stratum corneum lipid lamellar structures in a reconstructed human epidermis model, Chem. Phys. Lipids, 215, 56-62 (2018). https://doi.org/10.1016/j.chemphyslip.2018.05.003
  5. Z. Nemes and P. M. Steinert, Bricks and mortar of the epidermal barrier, Exp. Mol. Med., 31, 5-19 (1999). https://doi.org/10.1038/emm.1999.2
  6. W. G. Cho, K. A. Kim, S. I. Jang, and B. O. Cho, Behaviour of nanoemulsions containing ceramide IIIB and stratum corneum lipids, J. Soc. Cosmet. Sci. Kor., 44(1), 31-37 (2018). https://doi.org/10.15230/SCSK.2018.44.1.31
  7. R. Su, L. Yang, Y. Wang, S. Yu, Y. Guo, J. Deng, Q. Zhao, and X. Jin, Formulation, development, and optimization of a novel octyldodecanol- based nanoemulsion for transdermal delivery of ceramide IIIB, Int. J. Nanomedicine, 12, 5203-5221 (2017). https://doi.org/10.2147/IJN.S139975
  8. M. Ok and S. D. Cho, Natural liposome comprising ceramide, process for the preparation thereof, and cosmetic composition comprising the same, KR patent 10-1727974 (2017).
  9. J. H. Lee, J. B. Lee, and M. S. Park, A cosmetic composition comprising a ceramide containing capsule, KR patent 10-2070557 (2020).
  10. J. H. Hong and E. J. Kim, Macro-capsule containing ceramide and cosmetic composition comprising the same for moisturizing, KR patent 10-1826699 (2018).
  11. Y. J. Kim, J. W. Shim, E. J. An, M. J. Kim, and J. W. Kim, Multi-layered lamellar granule and skin external application composition containing same, KR patent 10-1527580 (2015).
  12. E. Yilmaz and H. H. Borchert, Design of a phytosphingosine-containing, positively charged nanoemulsion as a colloidal carrier system for dermal application of ceramides, Eur J. Pharm. Biopharm., 60(1), 91-98 (2005). https://doi.org/10.1016/j.ejpb.2004.11.009
  13. Y. Tokudome, Y. Saito, F. Sato, M. Kikuchi, T. Hinokitani, and K. Goto, Preparation and characterization of ceramide-based liposomes with high fusion activity and high membrane fluidity, Colloids Surf. B Biointerfaces, 73, 92-96 (2009). https://doi.org/10.1016/j.colsurfb.2009.05.002
  14. K. Vavrova, A. Kovacik, and L. Opalka, Ceramides in the skin barrier, Eur. Pharm. J., 64, 1-8 (2017).
  15. Q. Zhang, C. R. Flach, R. Mendelsohn, G. Mao, A. Pappas, M. C. Mack, R. M. Walters, and M. D. Southall, Topically applied ceramide accumulates in skin glyphs, Clin. Cosmet. Investig. Dermatol., 8, 329-337 (2015).
  16. S. Y. Lee, Y. M. Lim, and B. S. Jin, Effects of edge activator on the droplet size and skin permeation of hydrated liquid crystalline vesicles, Appl. Chem. Eng., 28(6), 679-684 (2017). https://doi.org/10.14478/ace.2017.1077
  17. G. M. M. El Maghraby, A. C. Williams, and B. W. Barry, Interactions of surfactants (edge activators) and skin penetration enhancers with liposomes, Int. J. Pharm., 276, 143-161 (2004). https://doi.org/10.1016/j.ijpharm.2004.02.024
  18. J. M. Holopainen, J. Y. A. Lehtonen, and P. K. J. Kinnunen, Lipid microdomains in dimyristoylphosphatidylcholine-ceramide liposomes, Chem. Phys. Lipids, 88, 1-13 (1997). https://doi.org/10.1016/S0009-3084(97)00040-6
  19. D. Marsh, Lateral order in gel, subgel and crystalline phases of lipid membranes: Wide-angle X-ray scattering, Chem. Phys. Lipids, 165(1), 59-76 (2012). https://doi.org/10.1016/j.chemphyslip.2011.11.001
  20. G. S. K. Pilgram, D. C. J. Vissers, H. der Meulen, Henk K. Koerten, S. Pavel, S. P. M. Lavrijsen, and J. A. Bouwstra, Atopic dermatitis and lamellar ichthyosis, J. Invest. Dermatol,, 117(3), 710-717 (2001). https://doi.org/10.1046/j.0022-202x.2001.01455.x
  21. K. Y. Jeong and D. K. Lee, Influence of ceramide III on the structure of a phospholipid lamellar liquid crystalline phase hydrated in glycerin: Structural and thermal behaviors, Appl. Chem. Eng., 21(6), 603-609 (2010).
  22. A. Hussain, S. Singh, D. Sharma, T. J. Webster, K. Shafaat, and A. Faruk, Elastic liposomes as novel carriers: recent advances in drug delivery, Int. J. Nanomedicine, 17, 5087-5108 (2017).
  23. G. M. El Maghraby, B. W. Barry, and A. C. Williams, Liposomes and skin: From drug delivery to model membranes, Eur. J. Pharm. Sci., 34, 203-222 (2008). https://doi.org/10.1016/j.ejps.2008.05.002
  24. E. Christophers and A. M. Kligman, Visualization of the cell layers of the stratum corneum, J. Invest. Dermatol., 42, 407-409 (1964). https://doi.org/10.1038/jid.1964.88
  25. M. N. Jones, The surface properties of phospholipid liposome systems and their characterization, Adv. Colloid Interface Sci., 54, 93-128 (1995). https://doi.org/10.1016/0001-8686(94)00223-Y
  26. E. H. Lee, A. Kim, Y. K. Oh, and C. K. Kim, Effect of edge activators on the formation and transfection efficiency of ultradeformable liposomes, Biomaterials, 26(2), 205-210 (2005). https://doi.org/10.1016/j.biomaterials.2004.02.020
  27. M. Boncheva, F. Damien, and V. Normand, Molecular organization of the lipid matrix in intact Stratum corneum using ATR-FTIR spectroscopy, Biochim. Biophys. Acta, 1778, 1344-1355 (2008). https://doi.org/10.1016/j.bbamem.2008.01.022
  28. F. Damien and M. Boncheva, The extent of orthorhombic lipid phases in the stratum corneum determines the barrier efficiency of human skin in vivo, J. Invest Dermatol., 130, 611-614 (2010). https://doi.org/10.1038/jid.2009.272
  29. L. Rieppo, S. Saarakkala, T. Narhi, H. J. Helminen, J. S. Jurvelin, and J. Rieppo, Application of second derivative spectroscopy for increasing molecular specificity of fourier transform infrared spectroscopic imaging of articular cartilage, Osteoarthr. Cartil., 20, 451-459 (2012). https://doi.org/10.1016/j.joca.2012.01.010