In the school mathematics, the negative numbers have been instructed by means of intuitive models(concrete situation models, number line model, colour counter model), inductive-extrapolation approach, and the formal approach using the inverse operation relations. These instructions on the negative numbers have caused students to have the difficulty in understanding especially why the rules of signs hold. It is due to the fact that those models are complicated, inconsistent, and incomplete. So, students usually should memorize the sign rules. In this study we studied on the didactical phenomenology of the negative numbers as a foundational study for the improvement of teaching negative numbers. First, we analysed the formal nature of the negative numbers and the cognitive obstructions which have showed up in the historic-genetic process of them. Second, we investigated what the middle school students know about the negative numbers and their operations, which they have learned according to the current national curriculum. The results showed that the degree they understand the reasons why the sign rules hold was low Third, we instructed the middle school students about the negative number and its operations using the formal approach as Freudenthal suggest ed. And we investigated whether students understand the formal approach or not. And we analysed the validity of the new teaching method of the negative numbers. The results showed that students didn't understand the formal approach well. And finally we discussed the directions for improving the instruction of the negative numbers on the ground of these didactical phenomenological analysis.
본 연구는 메타버스 플랫폼을 통한 비블리오드라마의 구현에 대한 성서 교수학적인 접근을 목적으로 하였다. 즉, 현대의 학습자들에게 흥미롭고 효과적인 성서 교육을 위해 메타버스 가상세계를 통한 비블리오드라마의 구현을 교수학적으로 접근하였다. 교육에서 메타버스에 열광하는 대표적인 이유는 콘텐츠 소비자에 불과했던 이용자들이 체험과 가치 창출까지 가능한 참여자가 되었기 때문이다. 성서 교수학적 접근방법으로 비블리오드라마는 역할극 형태의 공감과 소통을 통한 학습방법으로 성서의 내용을 학습함에 있어서 즉흥적 연기를 통해 학습자의 세계와 성서의 세계와의 상호작용을 추구한다. 비블리오드라마와 메타버스의 만남은 현대의 학습자들에게 무엇보다도 학습 환경과 학습 흥미 측면에서 긍정적인 영향을 미칠 수 있다. 또한 메타버스를 활용하여 비블리오드라마를 구현하면 다음과 같은 장점이 있다 첫째 성서 본문의 의미를 과거가 아니라 오늘의 학습자에게 해당되는 것으로 볼 수 있도록 극적인 상황과 환경을 구성할 수 있다. 둘째, 메타버스에서는 성서의 역사적 공간과 인물을 가상현실에서 구현하여 상황극으로 연출할 수 있다. 학습자는 메타버스에서 자유도와 상상력, 창의성을 발휘하여 비블리오드라마를 구현할 수 있으며, 성서의 사건에서 감추어진 여백의 의미에 주목할 수 있다. 셋째, 메타버스 환경은 정적인 것이 아니라, 역동성과 상호작용이 활발하고, 비블리오드라마는 영과 몸이 함께 어우러지는 해석을 추구한다. 그렇기 때문에 성서의 의미와 가치를 발견하는 동적인 활동들을 통하여 영육이 통합된 전인적인 신앙 형성을 할 수 있다.
In school mathematics, the negative numbers have been instructed using the intuitive models such as the number line model, the counting model, and inductive-extrapolation on the additionand multiplication and using inverse operation on the subtraction and division. Theseinstructions on the negative numbers did not present their formal nature and caused the difficulty for students to understand their operations because of the incomplete function of the intuitive models. In this study, we tried to improve such problems of the instructions of the negative numbers on the basis of the didactical phenomenological analysis. First of all, we analysed the nature of the negative numbers and the cognitive obstructions through the examination about the historic process of them. Second, we examined hew the nature of the negative numbers were analysed and described in mathematics. Third, we explored the improving directions for them on the ground of the didactical phenomenological analysis. In school mathematics, the rules of operations using the intuitive models of the negative numbers have been Instructed rather than approaching toward the nature of them. The negative numbers have been developed from the necessity to find the general solution of equations. The study tries to approach the operations instructions of the negative numbers formative]y to overcome the problems of those that are using the intuitive models and to reflect the formative Furthermore of the negative numbers. Furthermore, we examine the way of the instruction of the negative numbers in real context so that the algebraic feature and the real context should be Interactive.
The purpose of this study is to show that the topology is closely related to some subjects learned in school mathematics and then to give motivations for learning of the topology. To do this, it is showed that the topology is an abstracted device that deal with structure of limit and continuity introduced in school mathematics. This study took a literature study. The results of this study are as follows. First, the formal definition of general topology to structure open sets was examined. The nearness relation together with the closure operation was introduced and used to characterize for construction of general topology. Second, as definitions for continuity of function, we considered the intuitive definition, definition, structured definitions using open intervals and definition using open sets and then we investigated their roles. We also examined equivalent definition using the nearness relation which is helpful to understand continuity of function. Third, the sequence and its limit are treated in terms of continuous functions having the set of natural numbers and its extended set as domains. From these, it can be concluded that the convergence of sequence and the continuity of function are identified as functions that preserve the nearness relation and that the topology is a specialized tool for dealing with convergence and continuity.
This research was to understand the features of mathematization and didactical phenomenology, in a way that was not a routine calculation of equation, rather a complete comprehension by the reinventing historical principles of the equation. To achieve the purpose of this study, one-mate middle school student participated in the study. Interview and observation were used for collecting data during the student's performance. The results of research were: First, the student understood the mathematical concepts from a real life and developed the abstract concepts from it, which were very intimately related with his life. Second, the skill and formula definition were accomplished with the accompanying predicted and consequently derived mathematical concepts. Third, through the approach of using the history of mathematics, he became more interested in what he was doing and took lessons with confidence. Forth, the student performed his learning based on the historical reinventing principle under the proper guidance of a teacher.
이 연구는 우리나라 초등학교 수학교과서에서 속력이 어떻게 다루어져 왔는지를 분석하고, 그 결과를 바탕으로 현재 2009 개정 수학과 교육과정 상의 속력 개념과 지도 맥락의 특성을 진단하여, 차후 초등수학에서 속력을 지도하는 교수학적 시사점을 도출하고자 하였다. 이를 위하여 제1차 교육과정에서 2009 개정 수학과 교육과정까지의 교육과정 문서와 교과서의 속력 단원을 살펴보았다. 분석 결과, 우리나라 초등수학의 속력 지도는 평균 속력 개념을 바탕으로 하며, 비례 관계에 대한 추론 측면보다는 거리와 시간의 비의 값을 적용하는 측면이 강화되어왔다는 것을 확인하였다. 이상의 결과를 종합하여 등속 운동을 통한 속력 개념의 도입과 속력 맥락에서 비례추론 활동을 강화하는 것을 개선 방향으로 제안하였다.
학교 수학에서는 다각형이나 다면체를 '둘러싸인'이나 '이루어진'과 같은 중의적이거나 불명료한 표현을 사용하여 정의하며, 맥락에 따라 때로는 경계만 때로는 내부까지 의미하는 것으로 사용한다. 다각형과 다면체는 학교수학에서 맥락 의존적 개념으로 취급된다. 초등학교수학에서는 면이 입체라는 맥락 속에서 등장하지만 중학교에서는 보다 일반적인 맥락에서 선이 움직인 자리로 도입된다. 오류주의의 관점에서 볼 때, 다각형, 다면체, 면 개념 지도에 있어 학생들이 기존에 가지고 있는 관념을 수정하고 개선해 가도록 하는 학습 지도가 가능할 뿐 아니라 바람직하다. 한편, 교과서에서 다면체의 면, 다면체의 모서리, 다면체의 꼭지점이라는 표현 대신 단순히 면, 모서리, 꼭지점이라고 하는 것이 적절하다. 중학교 수학 교과서에서 사용되는 '다각형인 면'이라는 표현은 초등학교의 직관적인 접근과 중학교의 논리적인 접근의 충돌을 보여준다.
이 논문은 드모르간의 음수 지도 방법을 연구하는 것을 목적으로 한다. 이를 위하여 우선 드모르간이 제시한 대수발달 단계에 따라 드모르간의 음수관을 정리하고, 드모르간의 음수 지도 방법을 불가능한 뺄셈의 탐색, 불가능한 뺄셈에 대한 수정규칙 탐구, 불가능한 뺄셈에 대한 의미의 구성의 3단계로 나누어 고찰하였다. 드모르간의 음수 지도 방법의 특징은 방정식 지도와 결합되었다는 점, 불가능한 뺄셈 기호를 사용한다는 점, 역사발생적 과정을 준수하는 점진적 형식화를 추구한다는 점이다. 또한, 드모르간의 방법을 학교수학의 방법과 비교함으로써, 그 장점과 단점을 분석하였다. 드모르간은 수학적 실재를 형식과 의미를 동시에 갖는 것으로 보았던 자신의 수학관에 따라 음수를 설명하였으며, 대수의 발달 단계에 맞추어 음수를 서로 상이한 존재로 간주하였고 이에 따라 여러 단계를 거쳐 음수를 지도하도록 하고 있다. 그의 이러한 세심한 조처는 음수의 지도가 단시간에 마무리될 수 없는 성격의 것임을 분명히 인식하게 해 준다.
본 연구는 학습자의 개인차를 고려한 수학교과서에 관한 문헌연구로서, 러시아의 기하교육자인 Gusev의 실험용 기하교과서에 제시된 교과서의 체제, 학습 내용 및 연습문제의 틀과 내용을 분석하여 수준별 수학교육을 위한 수학적 지식의 교수학적 변환의 사례를 고찰하였다. 이를 위해, 1995년에서 1999년에 걸쳐 저술된 5∼11학년의 기하학 실험교과서를 본문 내용, 연습문제를 중심으로 분석하였다.
이 연구의 목적은 새수학의 전형이라 할 수 있는 SMSG의 넓이 교수-학습 방식에 대한 비판적 고찰을 통해 새수학 실패의 원인을 교수학적 측면에서 밝히는 것이다. SMSG의 계량도식에 따른 넓이 도입 방식의 독특성에 대해 파악하기 위해 Euclid의 $\ll$원론$\gg$, De Morgan의 $\ll$Elements of arithmetic$\gg$, 그리고 Legendre의 (Elements of geometry and trigonometry) 를 살펴보았다. 또, SMSG의 넓이 교수-학습 방식에 대한 Wittenberg(1963)과 Moise(1963)의 논쟁에 대해 고찰함으로써 초등성과 넓이개념에 대한 심상 형성이 SMSG의 넓이 교수-학습 방식의 성패의 중요한 관건이었다는 점을 확인하였다. 더 나아가 SMSG 넓이 교수-학습 방식이 닮음, 같은 넓이, 통약불가능성등과 같은 수학 내용과의 단절을 초래한다는 점에서 초등성과 기하적 심상의 부재를 낳을 수밖에 없었고, 그것이 SMSG 교수-학습 실패의 원인이라는 것을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.