• Title/Summary/Keyword: dicom

Search Result 253, Processing Time 0.024 seconds

An Efficient Medical Image Compression Considering Brain CT Images with Bilateral Symmetry (뇌 CT 영상의 대칭성을 고려한 관심영역 중심의 효율적인 의료영상 압축)

  • Jung, Jae-Sung;Lee, Chang-Hun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.5
    • /
    • pp.39-54
    • /
    • 2012
  • Picture Archiving and Communication System (PACS) has been planted as one of the key infrastructures with an overall improvement in standards of medical informationization and the stream of digital hospitalization in recent days. The kind and data of digital medical imagery are also increasing rapidly in volume. This trend emphasizes the medical image compression for storing large-scale medical image data. Digital Imaging and Communications in Medicine (DICOM), de facto standard in digital medical imagery, specifies Run Length Encode (RLE), which is the typical lossless data compressing technique, for the medical image compression. However, the RLE is not appropriate approach for medical image data with bilateral symmetry of the human organism. we suggest two preprocessing algorithms that detect interested area, the minimum bounding rectangle, in a medical image to enhance data compression efficiency and that re-code image pixel values to reduce data size according to the symmetry characteristics in the interested area, and also presents an improved image compression technique for brain CT imagery with high bilateral symmetry. As the result of experiment, the suggested approach shows higher data compression ratio than the RLE compression in the DICOM standard without detecting interested area in images.

Verification of Dose Evaluation of Human Phantom using Geant4 Code (Geant4 코드를 사용한 인체팬텀 선량평가 검증)

  • Jang, Eun-Sung;Choi, Ji-Hoon
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.5
    • /
    • pp.529-535
    • /
    • 2020
  • Geant4 is compatible with the Windows operating system in C++ language use, enabling interface functions that link DICOM or software. It was simulated to address the basic structure of the simulation using Geant4/Gate code and to specifically verify the density composition and lung cancer process in the human phantom. It was visualized using the Gate Graphic System, i.e. openGL, Ray Tracer: Ray Tracing by Geant4 Tracing, and using Geant4/Gate code, lung cancer is modeled in the human phantom area in 3D, 4D to verify the simulation progress. Therefore, as a large number of new functions are added to the Gate Code, it is easy to implement accurate human structure and moving organs.

Current Status and Improvements of Transfered PET/CT Data from Other Hospitals (외부 반출 PET/CT 영상 현황 및 개선점)

  • Kim, Gye-Hwan;Choi, Hyeon-Joon;Lee, Hong-Jae;Kim, Jin-Eui;Kim, Hyun-Joo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.38-40
    • /
    • 2010
  • Purpose: This study was performed to find the current problems of PET/CT data from other hospitals. Materials and Methods: The subjects were acquired from 64 hospitals referred to our department for image interpretation. The formats and contents of PET/CT data were reviewed and the phone questionnaire survey about these were performed. Results: PET/CT data from 39 of 64 hospitals (61%) included all transaxial CT and PET images with DICOM (Digital Imaging Communications in Medicine) standard format which were required for authentic interpretation. PET/CT data from the others included only secondary capture images or fusion PET/CT images. Conclusion: The majority of hospitals provided limited PET/CT data which could be inadequate for accurate interpretation and clinical decision making. It is necessary to standardize the format of PET/CT data to transfer including all transaxial CT and PET images with DICOM standard format.

  • PDF

Current Status and Problems of PET/CT Data on CD for Inter-hospital Transfer (병원간 전송용 PET/CT 영상 CD자료의 현황 및 문제점)

  • Hyun, Seung-Hyup;Choi, Joon-Young;Lee, Su-Jin;Cho, Young-Seok;Lee, Ji-Young;Cheon, Mi-Ju;Cho, Suk-Kyong;Lee, Kyung-Han;Kim, Byung-Tae
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.2
    • /
    • pp.137-142
    • /
    • 2009
  • Purpose: This study was performed to find the current problems of positron emission tomography/computed tomography(PET/CT) data on CD for inter-hospital transfer. Materials and Methods: The subjects were 746 consecutive $^{18}F$-fluorodeoxyglucose PET/CT data CDs from 56 hospitals referred to our department for image interpretation. The formats and contents of PET/CT data CDs were reviewed and the email questionnaire survey about this was performed. Results: PET/CT data CDs from 21 of 56 hospitals(37.5%) included all transaxial CT and PET images with DICOM standard format which were required for authentic interpretation. PET/CT data from the others included only secondary capture images or fusion PET/CT images. According to this survey, the main reason of limited PET/CT data on CD for inter-hospital transfer was that the data volume of PET/CT was too large to upload to the Picture Archiving and Communication System. Conclusion: The majority of hospitals provided limited PET/CT data on CD for inter-hospital transfer, which could be inadequate for accurate interpretation and clinical decision making. It is necessary to standardize the format of PET/CT data on CD for inter-hospital transfer including all transaxial CT and PET images with DICOM standard format.

A Study on Absorbed Dose in the Breast Tissue using Geant4 simulation for Mammography (유방촬영에서 Geant4 시뮬레이션를 이용한 유방조직내 흡수선량에 관한 연구)

  • Lee, Sang-Ho;Lee, Jong-Seok;Han, Sang-Hyun
    • Journal of radiological science and technology
    • /
    • v.35 no.4
    • /
    • pp.345-352
    • /
    • 2012
  • As the breast cancer rate is increasing fast in Korean women, people pay more attention to mammography and number of mammography have been increasing dramatically over the last few years. Mammography is the only means to diagnose breast cancer early, but harms caused by radiation exposure shouldn't be overlooked. Therefore, it is important to calculate the radiation dose being absorbed into the breast tissue during the process of mammography for a protective measure against radiation exposure. Because it is impossible to directly measure the radiation dose being absorbed into the human body, statistical calculation methods are commonly used, and most of them are supposed to simulate the interaction between radiation and matter by describing the human body internal structure with anthropomorphic phantoms. However, a simulation using Geant4 Code of Monte Carlo Method, which is well-known as most accurate in calculating the absorbed dose inside the human body, helps calculate exact dose by recreating the anatomical human body structure as it is through the DICOM file of CT. To calculate the absorbed dose in the breast tissue, therefore, this study carried out a simulation using Geant4 Code, and by using the DICOM converted file provided by Geant4, this study changed the human body structure expressed on the CT image data into geometry needed for this simulation. Besides, this study attempted to verify if the dose calculation of Geant4 interlocking with the DICOM file is useful, by comparing the calculated dose provided by this simulation and the measured dose provided by the PTW ion chamber. As a result, under the condition of 28kVp/190mAs, the Difference(%) between the measured dose and the calculated dose was found to be 0.08 %~0.33 %, and at 28 kVp/70 mAs, the Difference(%) of dose was 0.01 %~0.16 %, both of which showed results within 2%, the effective difference range. Therefore, this study found out that calculation of the absorbed dose using Geant4 Simulation is useful in measuring the absorbed dose in the breast tissue for mammography.

Continued image Sending in DICOM of usefulness Cosideration in Angiography (혈관조영술에서 동영상 전송의 유용성 고찰)

  • Park, Young-Sung;Lee, Jong-Woong;Jung, Hee-Dong;Kim, Jae-Yeul;Hwang, Sun-Gwang
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.9 no.2
    • /
    • pp.39-43
    • /
    • 2007
  • In angiography, the global standard agreements of DICOM is lossless. But it brings on overload and takes too much store space in DICOM sever. Because of all those things we transmit images which is classified in subjective way. But this cause data loss and would be lead doctors to make wrong reading. As a result of that we try to transmit continued image (raw data) to reduce those mistakes. We got angiography images from the equipment(Allura FD20-Philips). And compressed it in two different methods(lossless & lossy fair). and then transmitted them to PACS system. We compared the quality of QC phantom images that are compressed by different compress method and compared spatial resolution of each images after CD copy. Then compared each Image's data volume(lossless & lossy fair). We measured spatial resolution of each image. All of them had indicated 401p/mm. We measured spatial resolution of each image after CD copy. We got also same conclusion (401p/mm). The volume of continued image (raw data) was 127.8MB(360.5 sheets on average) compressed in lossless and 29.5MB(360.5 sheets) compressed in lossy fair. In case of classified image, it was 47.35MB(133.7 sheets) in lossless and 4.5MB(133.7 sheets) in lossy fair. In case of angiography the diagnosis is based on continued image(raw data). But we transmit classified image. Because transmitting continued image causes some problems in PACS system especially transmission and store field. We transmit classified image compressed in lossless But it is subjective and would be different depend on radiologist. therefore it would make doctors do wrong reading when patients transfer another hospital. So we suggest that transmit continued image(raw data) compressed in lossy fair. It reduces about 60% of data volume compared with classified image. And the image quality is same after CD copy.

  • PDF

Effect of the STereoLithography File Structure on the Ear Shell Production for Hearing Aids According to DICOM Images (DICOM 영상에 의한 STL 파일 구조가 보청기 이어 쉘 제작에 미치는 영향)

  • Kim, Hyeong-Gyun
    • Journal of radiological science and technology
    • /
    • v.40 no.1
    • /
    • pp.121-126
    • /
    • 2017
  • A technique for producing the ear shell for a hearing aid using DICOM (Digital Imaging and Communication in Medicine) image and a 3D printing was studied. It is a new application method, and is an application technique that can improve the safety and infection of hearing aid users and can reduce the production time and process stages. In this study, the effects on the shape surface were examined before and after the printing of the ear shell using a 3D printer based on the values obtained from the raw data of the DICOM images at the volumes of 0.5 mm, 1.0 mm, and 2.0 mm, respectively. Before the printing, relative relationship was compared with respect to the STL (STereoLithography) file structure; and after the printing, the intervals of the layered structure of the ear shell shape surface were compared by magnifying them using a microscope. For the STL file structure, the numbers of triangular vertices, more than five intersecting points, and maximum intersecting points were large in the order of 0.5 mm, 1.0 mm, and 2.0 mm, respectively; and the triangular structure was densely distributed in the order of the bending, angle, and crest regions depending on the sinuosity of the external auditory meatus shape. As for the ear shell shape surface examined by the digital microscope, the interval of the layered structure was thick in the order of 2.0 mm, 1.0 mm, and 0.5 mm. For the STL surface structure mentioned above, the intersecting STL triangular structure was denser as the sinuosity of the 3D ear shell shape became more irregular and the volume of the raw data decreased.

Set Up and Operation for Medical Radiation Exposure Quality Control System of Health Promotion Center (건강검진센터의 의료방사선 피폭 품질관리 시스템 구축 운영 경험 보고)

  • Kim, Jung-Su;Jung, Hae-Kyoung;Kim, Jung-Min
    • Journal of radiological science and technology
    • /
    • v.39 no.1
    • /
    • pp.13-17
    • /
    • 2016
  • In this study, standard model of medical radiation dosage quality control system will be suggested and the useful of this system in clinical field will be reviewed. Radiation dosage information of modalities are gathered from digital imaging and communications in medicine(DICOM) standard data(such as DICOM dose SR and DICOM header) and stored in database. One CT scan, two digital radiography modalities and two mammography modalities in one health promotion center in Seoul are used to derive clinical data for one month. After 1 months research with 703 CT scans, the study shows CT $357.9mGy{\cdot}cm$ in abdomen and pelvic CT, $572.4mGy{\cdot}cm$ in brain without CT, $55.9mGy{\cdot}cm$ in calcium score/heart CT, screening CT at $54mGy{\cdot}cm$ in chest screening CT(low dose screening CT scan), $284.99mGy{\cdot}cm$ in C-spine CT and $341.85mGy{\cdot}cm$ in L-spine CT as health promotion center reference level of each exam. And with 1955 digital radiography cases, it shows $274.0mGy{\cdot}cm2$ and for mammography 6.09 mGy is shown based on 536 cases. The use of medical radiation shall comply with the principles of justification and optimization. This quality management of medical radiation exposure must be performed in order to follow the principle. And the procedure to reduce the radiation exposure of patients and staff can be achieved through this. The results of this study can be applied as a useful tool to perform the quality control of medical radiation exposure.