• Title/Summary/Keyword: detoxifying enzyme activity

Search Result 34, Processing Time 0.019 seconds

Reciprocal Effect of DHEA and Rietary Fat on Glutathione Utilizing Detoxifying System in Rat Liver Tissue

  • Kwak, Chung-Shil;Kwon, In-Soon;Park, Sang-Chul
    • Nutritional Sciences
    • /
    • v.3 no.1
    • /
    • pp.11-17
    • /
    • 2000
  • This study was intended to examine whether dehydroepiandrosterone (DHEA) and dietary fat level or source could modulate glutathione utilizing detoxifying system activity and the cytosolic NADPH generation in rat liver. Male Sprague-Dawley rats were fed semipurifed diet containing either 2%(w/w) corn oil (low level of corn oil diet: 5 ca% of fat) 15% corn oil (high level of corn oil diet: 31 cal% of fat) or 13% sardine oil plus 2% corn oil(high level of fish oil diet: 31 cal% of fat) for 9 weeks. Half of the rats in each diet group were fed a diet supplemented with 0.2% DHEA (w/w). DHEA administration increased plasma total cholesterol level in low corn oil diet-fed rats. The high fish oil diet significantly decreased plasma total cholesterol level compared to the high corn oil diet. Plasma triglyceride level was not significantly changed by DHEA administration and dietary fat level and source. Fasting plasma glucose level was increased by DHEA administration and fish oil diet. Glucose 6-phosphate dehydrogenase activity in liver tissue was significantly increased by DHEA administration and high fat diet, especially fish oil diet. Malic enzyme activity in liver tissue was significantly increased by DHEA administration and high fat diet, especially fish oil diet. Malic enzyme activity in liver tissue was significantly increased by DHEA administration. DHEA suppressed the glutathione peroxidase, glutathione-dependent enzymes compared to the low corn oil diet, while fish oil diet elevated the activity of glutathione peroxidase and glutathione reductase compared to corn oil diet. These results suggest that DHEA administration and high level of corn oil diet may suppress the cellular detoxifying system activity through reduction of glutathione utilization, while the fish oil diet did not show these effects.

  • PDF

Synergistic effects of pesticides on detoxifying enzyme activity of carp(Cyprinus carpio L.) (농약의 협력작용으로 인한 잉어의 해독효소 활성의 변화)

  • Kim, In-Seon;Lee, Kang-Bong;Shim, Jae-Han;Suh, Yong-Tack
    • Applied Biological Chemistry
    • /
    • v.36 no.1
    • /
    • pp.64-69
    • /
    • 1993
  • This study was performed to investigate detoxifying enzyme activities of carboxylesterase(CE), glutathione S-transferase(GST) and lactate dehydrogenase(LDH) at variable toxicity levels in fresh water fish, carp(Cyprinus carpio L.). The carp was exposed to single and combined pesticides of IBP, isoprothiolane and cartap for 48 hr at sublethal doses, $LC_{10}$ and $LC_{26}$. The detoxifying enzyme activities were assayed for the liver, head and gut of the carp. The enzyme activities we discovered were as follows: Both activities of CE and GST were increased at the sublethal doses but were declined by increasing doses. In the gut, we found that the CE activity had high levels in the treatment groups of isoprothiolane+IBP and isoprothiolane+cartap. In the head, the CE activity had high levels in the treatment groups of cartap, IBP and isoprothiolane. However, the GST activities were inconsistent in the head and gut of the fish. Also, the GST activity was declined by increasing protein contents. The highest LDH activity was shown in the isoprothiolane treated fish, while the lowest activity was observed in the isoprothiolane+cartap treatment.

  • PDF

Comparison of toxicity and detoxifying enzyme activity in carp (Cyprinus carpio) treated with some synergistic pesticides (농약 상호간의 협력작용에 의한 잉어의 독성과 해독효소 활성의 비교)

  • Yang, Kwang-Rok;Shim, Jae-Han;Suh, Yong-Tack
    • Applied Biological Chemistry
    • /
    • v.35 no.5
    • /
    • pp.367-374
    • /
    • 1992
  • This study was performed to investigate effects of probable detoxifying enzyme activity and toxicity by pesticides and their combinations in the fresh water fish. Seven pesticides including IBP, isoprothiolane, cartap, ridomil, chlorothalonil, captafol and endosulfan were subjected to investigate for their acute toxicites and synergism possibilities. The $LC_{50}$ value of endosulfan was the lowest at showing 0.0079 ppm and that of metalaxyl was the highest as showing 40 ppm over. The synergism effects of relative pesticides were observed in the combinations of isoprothiolane+IBP and isoprothiolane+cartap. The changes of glycogen contents in fish liver were assayed for 5 pesticides and its highest inhibition effect of glycogen showed in IBP treated fish. The activity of probable detoxifying enzymes including carboxylesterase (CE), glutathion S-transferase (GST) and lactate dehydrogenase (LDH) were assayed in carp liver at dose of sublethal concentrations. Effects of pesticides on changes in each enzyme activities were as follows: carboxylesterase (CE) activities were the highest in IBP and gtutathion S-transferase (GST) activities were the highest in iosoprothiolane+IBP. Both activities of carboxylesterase (CE) and glutahtion S-transferase (GST) were increased by 5 chemicals. The highest LDH activity showed in isoprothiolane treated fish, while the lowest activity was observed in isoprothiolane+cartap. Sublethal exposure to cartap and isoprothiolane+cartap in carp exerted various effects on LDH activity.

  • PDF

Hepatoprotective effects and Mechanism of Flavonoids

  • Kim, Young-Gwan;Kim, Dong-Hyun;Lee, Kyung-Tae
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.212.2-212.2
    • /
    • 2003
  • Primary cultured rat hepatocytes injured by carbon tetrachloride as a model to screen for hepatoprotective effect. Four flavonoid compounds showed anti-hepatotoxic effect by decrease GPT. LDH activity and MDA level. Also screen for hepatoprotective, anti-oxidative and anti-apoptosis effects of baicalin and baicalein on chang cell treated with t-BHP. Mesured radical detoxifying enzyme, GST and antioxidant enzyme SOD, Catalase activity, GSH level and Cellular glutathion peroxidase activity. (omitted)

  • PDF

A Study on the Enzyme Activities of a Honeybee(Apis cerana F.) Associated with the Degradation of Some Insecticides. (살충제분해에 관여하는 동양종(東洋種)꿀벌의 효소활성(酵素活性)에 관(關)한 연구(硏究))

  • Suh, Yong-Tack;Shim, Jae-Han
    • Korean Journal of Environmental Agriculture
    • /
    • v.8 no.1
    • /
    • pp.47-54
    • /
    • 1989
  • This study was conducted to investigate insecticide toxicities to a honeybee, Apis cerana F. being raised in Korea and its detoxifying enzyme activities. In order to determine the appropriate usage of insecticides, median effective dose and detoxifying enzyme activities to seven insecticides were observed. Various detoxifying enzymes, including microsomal oxidases, glutathione S-transferases, esterases, and DDT-dehydrochlorinase were assayed in the midguts of adult worker bees as the enzyme source. Of the insecticides used, $LC_{50}$ value in DDT treatment was the highest as 19ppm, and that in EPN treatment was the lowest as 0.75ppm. Sublethal exposures of honeybees to various insecticides had some effects on microsomal enzyme activities. Aldrin epoxidase activity was inhibited by malathion and demeton S-methyl treatment. N-demethylase activity was induced by carbaryl treatment. Of the glutathione S-transferases, aryltransferase(DCNB conjugation) activity was significantly induced by diazinon, and moderately induced by malathion. Of the esterases, ${\alpha}-NA$ esterase activity was moderately inhibited by malathion and permethrin. Carboxylesterase and acetylcholinesterase activity were not affected by the sublethal exposure of honeybee to the insecticides. Sublethal exposure of honeybee to the insecticides had no effect on DDT- dehydrochlorinase activity, except carbaryl, malathion and demeton S-methyl were inhibited.

  • PDF

Inhibitory Effects of Opuntia humifusa on 7, 12-Dimethyl-benz[a]anthracene and 12-O-tetradecanoylphorbol-13-acetate Induced Two-stage Skin Carcinogenesis

  • Lee, Jin-A;Jung, Bock-Gie;Lee, Bong-Joo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.9
    • /
    • pp.4655-4660
    • /
    • 2012
  • Opuntia humifusa, member of the Cactaceae family, was previously demonstrated to have radical scavenging, anti-inflammatory and anti-proliferative effects in in vitro models. It was suggested that O. humifusa could function in the prevention of carcinogenesis. To investigate the in vivo chemopreventive effect of O. humifusa, mice were fed a diet containing either 1% or 3% following 7, 12-dimethylbenz[a] anthracene (DMBA) and 12-O-tetradecanoylphorbol-13-acetate (TPA) induction of skin carcinogenesis. Significant decrease in the numbers of papilloma and epidermal hyperplasia were observed in mice fed with O. humifusa, compared to the control group. O. humifusa also upregulated high total antioxidant capacity and level of phase II detoxifying enzyme such as superoxide dismutase and glutathione S-transferase activity in the skin. Lipid peroxidation activity level was measured in skin cytosol and significantly inhibited in 3% OH fed group compared to the control group. These results suggest that O. humifusa exerts chemopreventive effects on chemical carcinogenesis in mouse skin and that prevention effects are associated with reduction of oxidative stress via the modulation of cutaneous lipid peroxidation, enhancing of total antioxidant capacity especially in phase II detoxifying enzyme system and partial apoptotic influence.

Protection by Chrysanthemum zawadskii extract from liver damage of mice caused by carbon tetrachloride is maybe mediated by modulation of QR activity

  • Seo, Ji-Yeon;Lim, Soon-Sung;Park, Ji-A;Lim, Ji-Sun;Kim, Hyo-Jung;Kang, Hui-Jung;YoonPark, Jung-Han;Kim, Jong-Sang
    • Nutrition Research and Practice
    • /
    • v.4 no.2
    • /
    • pp.93-98
    • /
    • 2010
  • Our previous study demonstrated that methanolic extract of Chrysanthemum zawadskii Herbich var. latilobum Kitamura (Compositae) has the potential to induce detoxifying enzymes such as NAD(P)H:(quinone acceptor) oxidoreductase 1 (EC 1.6.99.2) (NQO1, QR) and glutathione S-transferase (GST). In this study we further fractionated methanolic extract of Chrysanthemum zawadskii and investigated the detoxifying enzyme-inducing potential of each fraction. The fraction (CZ-6) shown the highest QR-inducing activity was found to contain (+)-(3S,4S,5R,8S)-(E)-8-acetoxy-4-hydroxy-3-isovaleroyloxy-2-(hexa-2,4-diynyliden)-1,6-dioxaspiro [4,5] decane and increased QR enzyme activity in a dose-dependent manner. Furthermore, CZ-6 fraction caused a dose-dependent enhancement of luciferase activity in HepG2-C8 cells generated by stably transfecting antioxidant response element-luciferase gene construct, suggesting that it induces antioxidant/detoxifying enzymes through antioxidant response element (ARE)-mediated transcriptional activation of the relevant genes. Although CZ-6 fraction failed to induce hepatic QR in mice over the control, it restored QR activity suppressed by $CCl_4$ treatment to the control level. Hepatic injury induced by $CCl_4$ was also slightly protected by pretreatment with CZ-6. In conclusion, although CZ-6 fractionated from methanolic extract of Chrysanthemum zawadskii did not cause a significant QR induction in mice organs such as liver, kidney, and stomach, it showed protective effect from liver damage caused by $CCl_4$.

Schisandra Chinensis Baillon regulates the gene expression of phase II antioxidant/detoxifying enzymes in hepatic damage induced rats

  • Jang, Han I;Do, Gyeong-Min;Lee, Hye Min;Ok, Hyang Mok;Shin, Jae-Ho;Kwon, Oran
    • Nutrition Research and Practice
    • /
    • v.8 no.3
    • /
    • pp.272-277
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: This study investigated the antioxidant activities and hepatoprotective effects of Schisandra chinensis Baillon extract (SCE) against tert-butyl hydroperoxide (t-BHP)-induced oxidative hepatic damage in rats. MATERIALS/METHODS: Sprague-Dawley (SD) rats were pretreated with SCE (300, 600, and 1,200 mg/kg BW) or saline once daily for 14 consecutive days. On day 14, each animal, except those belonging to the normal control group, were injected with t-BHP (0.8 mmol/kg BW/i.p.), and all of the rats were sacrificed 16 h after t-BHP injection. RESULTS: Although no significant differences in AST and ALT levels were observed among the TC and SCE groups, the high-dose SCE group showed a decreasing tendency compared to the TC group. However, erythrocyte SOD activity showed a significant increase in the low-dose SCE group compared with the TC group. On the other hand, no significant differences in hepatic total glutathione (GSH) level, glutathione reductase (GR), and glutathione peroxidase (GSH-Px) activities were observed among the TC and SCE groups. Hepatic histopathological evaluation revealed that pretreatment with SCE resulted in reduced t-BHP-induced incidence of lesions, such as neutrophil infiltration, swelling of liver cells, and necrosis. In particular, treatment with a high dose of SCE resulted in induction of phase II antioxidant/detoxifying enzyme expression, such as glutathione S-transferase (GST) and glutamate-cysteine ligase catalytic subunit (GCLC). CONCLUSIONS: Based on these results, we conclude that SCE exerts protective effects against t-BHP induced oxidative hepatic damage through the reduction of neutrophil infiltration, swelling of liver cells, and necrosis. In addition, SCE regulates the gene expression of phase II antioxidant/detoxifying enzymes independent of hepatic antioxidant enzyme activity.

Potential Chemoprevention Activity of Pterostilbene by Enhancing the Detoxifying Enzymes in the HT-29 Cell Line

  • Harun, Zaliha;Ghazali, Ahmad Rohi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6403-6407
    • /
    • 2012
  • Detoxifying enzymes are present in most epithelial cells of the human gastrointestinal tract where they protect against xenobiotics which may cause cancer. Induction of examples such as glutathione S-transferase (GST) and its thiol conjugate, glutathione (GSH) as well as NAD(P)H: quinoneoxidoreductase (NQO1) facilitate the excretion of carcinogens and thus preventing colon carcinogenesis. Pterostilbene, an analogue of resveratrol, has demonstrated numerous pharmacological activities linked with chemoprevention. This study was conducted to investigate the potential of pterostilbene as a chemopreventive agent using the HT-29 colon cancer cell line to study the modulation of GST and NQO1 activities as well as the GSH level. Initially, our group, established the optimum dose of 24 hours pterostilbene treatment using MTT assays. Then, effects of pterostilbene ($0-50{\mu}M$) on GST and NQO1 activity and GSH levels were determined using GST, NQO1 and Ellman assays, respectively. MTT assay of pterostilbene ($0-100{\mu}M$) showed no cytotoxicity toward the HT-29 cell line. Treatment increased GST activity in the cell line significantly (p<0.05) at 12.5 and $25.0{\mu}M$. In addition, treatment at $50{\mu}M$ increased the GSH level significantly (p<0.05). Pterostilbene also enhanced NQO1 activity significantly (p<0.05) at $12.5{\mu}M$ and $50{\mu}M$. Hence, pterostilbene is a potential chemopreventive agent capable of modulation of detoxifiying enzyme levels in HT-29 cells.

Potential Induction of Quinone Reductase Activity of Natural Products in Cultured Murine Hepa1c1c7 Cells

  • Heo, Yeon-Hoi;Lee, Sang-Kook
    • Natural Product Sciences
    • /
    • v.7 no.2
    • /
    • pp.38-44
    • /
    • 2001
  • NAD(P)H:quinone reductase (QR), known as DT-diaphorase, is a kind of detoxifying phase II metabolic enzyme catalyzing hydroquinone formation by two electron reduction pathway from quinone type compounds, and thus facilitating excretion of quinoids from human body. With the usefulness of QR induction activity assay system for the modulation of toxicants, in the course of searching for cancer chemopreventive agents from natural products, the methanolic extracts of approximately two hundreds of oriental medicines were primarily evaluated using the induction potential of quinone reductase (QR) activity in cultured murine Hepa1c1c7 cells. As a result, several extracts including Hordeum vulgare, Momordica cochinchinensis, Strychnos ignatii, Houttuynia cordata, and Polygala japonica were found to significantly induce QR activity. In addition, the methylene chloride fraction of H. vulgare, one major dietary food source, showed potent induction of QR activity $(CD=6.4{\mu}g/ml)$. Further study for isolation of active principles from these lead extracts is warranted for the discovery of novel cancer chemopreventive agents.

  • PDF