Abstract
This study was performed to investigate effects of probable detoxifying enzyme activity and toxicity by pesticides and their combinations in the fresh water fish. Seven pesticides including IBP, isoprothiolane, cartap, ridomil, chlorothalonil, captafol and endosulfan were subjected to investigate for their acute toxicites and synergism possibilities. The $LC_{50}$ value of endosulfan was the lowest at showing 0.0079 ppm and that of metalaxyl was the highest as showing 40 ppm over. The synergism effects of relative pesticides were observed in the combinations of isoprothiolane+IBP and isoprothiolane+cartap. The changes of glycogen contents in fish liver were assayed for 5 pesticides and its highest inhibition effect of glycogen showed in IBP treated fish. The activity of probable detoxifying enzymes including carboxylesterase (CE), glutathion S-transferase (GST) and lactate dehydrogenase (LDH) were assayed in carp liver at dose of sublethal concentrations. Effects of pesticides on changes in each enzyme activities were as follows: carboxylesterase (CE) activities were the highest in IBP and gtutathion S-transferase (GST) activities were the highest in iosoprothiolane+IBP. Both activities of carboxylesterase (CE) and glutahtion S-transferase (GST) were increased by 5 chemicals. The highest LDH activity showed in isoprothiolane treated fish, while the lowest activity was observed in isoprothiolane+cartap. Sublethal exposure to cartap and isoprothiolane+cartap in carp exerted various effects on LDH activity.
이스라엘 잉어와 참잉어에 대한 농약의 독성 및 glycogen의 함량변화, 호소활성을 조사하고 농약 상호간의 협력작용의 여부를 조사하였다. $LC_{50}$치의 측정결과는 공시약제 중 endosulfan이 0.0079 ppm으로 가장 독성이 강했고 metalaxyl이 40 ppm 이상으로 가장 낮았다. 농약 상간의 협력작용은 IBP+isoprothiolane과 cartap+isoprothiolane 처리구에서 나타났으며 그 ratio(SR)는 각각 1.85, 1.53이었다. 효소활성의 경우 carboxylesterase와 glutathione S-transferase 모두 증가되었다. Esterase의 활성은 IBP 처리구에서 가장 높았고 isoprothiolane 처리구에서 제일 낮았으며, glutathione의 CDNB conjugation은 isoprothiolane 처리구에서 가장 높았고 isoprothiolane+cartap 처리구에서 가장 낮았다. LDH의 경우 isoprothiolane 처리구에서 활성이 가장 높았고 isoprothiolane+cartap 처리구에서는 가장 낮았다. Glycogen의 함량은 공시약제의 처리구 모두에서 감소를 보였으며 IBP 처리구에서 감소정도가 가장 높았다.