• Title/Summary/Keyword: detection theory

Search Result 507, Processing Time 0.026 seconds

A Study on the Dynamic Characteristics of a Composite Beam with a Transverse Open Crack (크랙이 존재하는 복합재료 보의 동적 특성 연구)

  • 하태완;송오섭
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.1019-1028
    • /
    • 1999
  • Free vibration characteristics of cantilevered laminated composite beams with a transverse non0propagating open carck are investigated. In the present analysis a special ply-angle distribution referred to as asymmetric stiffness configuration inducing the elastic coupling between chord-wise bending and extension is considered. The open crack is modelled as an equivalent rotational spring whose spring constant is calculated on the basis of fracture mechanics of composite material structures. Governing equations of a composite beam with a open crack are derived via Hamilton's Principle and Timoshenko beam theory encompassing transverse shear and rotary inertia effect. the effects of various parameters such as the ply angle, fiber volume fraction, crack depth, crack position and transverse shear on the free vibration characteristics of the beam with a crack is highlighted. The numerical results show that the natural frequencies obtained from Timoshenko beam theory are always lower than those from Euler beam theory. The presence of intrinsic cracks in anisotropic composite beams modifies the flexibility and in turn free vibration characteristics of the structures. It is revealed that non-destructive crack detection is possible by analyzing the free vibration responses of a cracked beam.

  • PDF

Constraint Analysis and Reduction of Over-Constraints for Tolerance Design of Assemblies - A Case Study of Ball Valve Design (조립체 공차설계를 위한 제약해석과 과잉제약 개선 - 볼밸브 설계 사례연구)

  • Park, Jun Il;Yim, Hyunjune
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.8
    • /
    • pp.669-681
    • /
    • 2016
  • Mechanical designers often make mistakes that result in unwanted over-constraints, causing difficulty in assembly operations and residual stress due to interference among parts. This study is concerned with detection and elimination of over-constraints. Screw theory is a general method that is used for constraint analysis of an assembly and motion analysis of a mechanism. Mechanical assemblies with plane-plane, pin-hole, and pin-slot constraint pairs are analyzed using screw theory to illustrate its utility. As a real-world problem, a ball valve design is analyzed using the same method, and several unwanted over-constraints are detected. Elimination measures are proposed. Nominal dimensions of some parts are adjusted, and dimensions and tolerances of the pins and holes are modified using the virtual condition boundary concept. The revised design is free of over-constraints. General procedure for applying screw theory to constraint analysis is established and demonstrated; it will contribute to improving quality of assembly designs.

Network based Intrusion Detection System using Adaptive Resonance Theory 2 (Adaptive Resonance Theory 2를 이용한 네트워크 기반의 침입 탐지 모델 연구)

  • 김진원;노태우;문종섭;고재영;최대식;한광택
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.12 no.3
    • /
    • pp.129-139
    • /
    • 2002
  • As internet expands, the possibility of attack through the network is increasing. So we need the technology which can detect the attack to the system or the network spontaneously. The purpose of this paper proposes the system to detect intrusion automatically using the Adaptive Resonance Theory2(ART2) which is one of artificial neural network The parameters of the system was tunned by ART2 algorithm using a lot of normal packets and various attack packets which were intentionally generated by attack tools. The results were compared and analyzed with conventional methods.

The Detectability of Submarine's Turbulent Wake on the sea surface using Ship-Wake Theory (Ship-Wake 이론을 이용한 잠수함 항적탐색 가능성)

  • Lee, Yong-Chol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.4
    • /
    • pp.773-779
    • /
    • 2011
  • The width of a submarine's turbulent wake, using Shear-free and Ship wake theory, is proportional to $x^n,\;({\frac{1}{5}}{\leq}n<{\frac{1}{2}})$ If we assume submarine's length, width, velocity are 65m, 6.5m, 6kts respectively, and the minimum diffusion of turbulent wake ; ${\infty}\;x^{1/5}$, the width of wake behind the submarine is about 20m at 1.2km, 30m at 15km when there is no breaking waves on the sea surface. However, in the case of breaking waves, it is very limited to identify submarine's wake on the sea surface because wind generated turbulent wake has higher turbulent kinetic energy than that of submarine's wake. As a result, there is a high possibility to detect submarine's wake on the sea surface in the shallow water such as the Yellow-Sea using a proper detection method such as SAR. This means that in anti-submarine operations, non-acoustic sea surface serveillance applied turbulent wake will be very effective way to detect a submarine in near future. To do this we have to develop exact theory of submarine's turbulent wake above all.

DESIGN OF AN UNMANNED GROUND VEHICLE, TAILGATOR THEORY AND PRACTICE

  • KIM S. G.;GALLUZZO T.;MACARTHUR D.;SOLANKI S.;ZAWODNY E.;KENT D.;KIM J. H.;CRANE C. D.
    • International Journal of Automotive Technology
    • /
    • v.7 no.1
    • /
    • pp.83-90
    • /
    • 2006
  • The purpose of this paper is to describe the design and implementation of an unmanned ground vehicle, called the TailGator at CIMAR (Center for Intelligent Machines and Robotics) of the University of Florida. The TailGator is a gas powered, four-wheeled vehicle that was designed for the AUVSI Intelligent Ground Vehicle Competition and has been tested in the contest for 2 years. The vehicle control model and design of the sensory systems are described. The competition is comprised of two events called the Autonomous Challenge and the Navigation Challenge: For the autonomous challenge, line following, obstacle avoidance, and detection are required. Line following is accomplished with a camera system. Obstacle avoidance and detection are accomplished with a laser scanner. For the navigation challenge, waypoint following and obstacle detection are required. The waypoint navigation is implemented with a global positioning system. The TailGator has provided an educational test bed for not only the contest requirements but also other studies in developing artificial intelligence algorithms such as adaptive control, creative control, automatic calibration, and internet-base control. The significance of this effort is in helping engineering and technology students understand the transition from theory to practice.

Structural damage detection through longitudinal wave propagation using spectral finite element method

  • Kumar, K. Varun;Saravanan, T. Jothi;Sreekala, R.;Gopalakrishnan, N.;Mini, K.M.
    • Geomechanics and Engineering
    • /
    • v.12 no.1
    • /
    • pp.161-183
    • /
    • 2017
  • This paper investigates the damage identification of the concrete pile element through axial wave propagation technique using computational and experimental studies. Now-a-days, concrete pile foundations are often common in all engineering structures and their safety is significant for preventing the failure. Damage detection and estimation in a sub-structure is challenging as the visual picture of the sub-structure and its condition is not well known and the state of the structure or foundation can be inferred only through its static and dynamic response. The concept of wave propagation involves dynamic impedance and whenever a wave encounters a changing impedance (due to loss of stiffness), a reflecting wave is generated with the total strain energy forked as reflected as well as refracted portions. Among many frequency domain methods, the Spectral Finite Element method (SFEM) has been found suitable for analysis of wave propagation in real engineering structures as the formulation is based on dynamic equilibrium under harmonic steady state excitation. The feasibility of the axial wave propagation technique is studied through numerical simulations using Elementary rod theory and higher order Love rod theory under SFEM and ABAQUS dynamic explicit analysis with experimental validation exercise. Towards simulating the damage scenario in a pile element, dis-continuity (impedance mismatch) is induced by varying its cross-sectional area along its length. Both experimental and computational investigations are performed under pulse-echo and pitch-catch configuration methods. Analytical and experimental results are in good agreement.

Neural Correlates of Faux Pas Detection: An fMRI Study (헛디딤 탐지의 신경 상관: 기능적 자기공명 영상 연구)

  • Park, Min;Lee, Seung-Bok;Yoon, Hyo-Woon;Ghim, Hei-Rhee
    • Korean Journal of Cognitive Science
    • /
    • v.21 no.1
    • /
    • pp.77-93
    • /
    • 2010
  • The aim of this study was to identify neural correlates underlying the detection of faux pas, a test of theory of mind (ToM), in Korean healthy adults. Using functional magnetic resonance imaging, we compared the brain activities associated with faux pas stories and the activities associated with control stories. Faux pas stories compared with the control stories produced activations bilaterally in the superior frontal gyrus (BA 9) and in the precuneus (BA 7). The left medial frontal gyrus (BA 9), the left superior temporal gyrus (BA 38), the left inferior temporal gyrus (BA 20) and the right inferior parietal lobule (BA 40), the right postcentral gyrus (BA 1), the right lingual gyrus (BA 18), the right transverse temporal gyrus (BA 41) were also activated. The orbitofrontal cortex and the amygdala were not found to be involved in the detection of faux pas. This result suggests that brain activations associated with ToM are dependent on the type of mental state drawn by the task.

  • PDF

Brain Activation during Intentionality Detection: An fMRI Study (지향성 탐지 과정의 뇌 활성화: 기능적 자기공명 영상 연구)

  • Lee, Seung-Bok;Park, Min;Yoon, Hyo-Woon;Ghim, Hei-Rhee
    • Korean Journal of Cognitive Science
    • /
    • v.17 no.1
    • /
    • pp.1-13
    • /
    • 2006
  • We applied fMRI to examine brain activation at intentionality detection (ID) task. The main purpose of this study was to explore whether brain activation regions involved in intentionality detection (known as the basic mechanism of theory of mind) differ or not, according to prior instruction. Left uncus, superior temporal gyrus and right inferior occipital gyrus, supramarginal gyrus, inferior parietal lobule, thalamus (medial dorsal nucleus), and precuneus were activated with prior instruction. In contrast, ID task with no instruction activated merely inferior parietal lobule and superior parietal lobule. Common activated area between the two instruction conditions was inferiordparietal lobule. Our results suggest thar prior instruction activated ID-related brain regions more explicitly. furtherdinvestigations would be loused on spontaneity of intentionality detector and characteristic of participants.

  • PDF

A Theory of the Geological Magnetic Filter for the Improvement of the Signal to Noise Ratio of the Magnetic Detection System (자기 이상검출 시스템의 신호 대 잡음비 개선을 위한 자기환경 필터 이론)

  • Kim, Won-Ho;Kim, Eun-Ro;Yang, Chang-Sub;Choi, In-Kyu;Choi, Jun-Rim;Park, Jong-Sik
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.458-465
    • /
    • 1997
  • In this paper, a theory of the geological magnetic filter for the improvements of the signal to noise ratio of the magnetic detection system has been developed. The geological magnetic filter takes two sequences of magnetic fields measured from the reference sensor and the detector sensor and calculate the correlations between them in the frequency domain. Using the filter, we can remove the coherent noises in the time domain and improve the signal to noise ratio of the magnetic detection system. With the recent developments of the DSP hardware technology the geological magnetic filter can be easily implemented using the digital signal processor. We show the ability of the geological magnetic filter under various circumstances through computer simulations. Numerical simulation results show that geological magnetic filter can excellently remove the sensor misalignment effects and the regular short range local noise as well as it delete the coherent noises.

  • PDF

Damage detection in structural beam elements using hybrid neuro fuzzy systems

  • Aydin, Kamil;Kisi, Ozgur
    • Smart Structures and Systems
    • /
    • v.16 no.6
    • /
    • pp.1107-1132
    • /
    • 2015
  • A damage detection algorithm based on neuro fuzzy hybrid system is presented in this study for location and severity predictions of cracks in beam-like structures. A combination of eigenfrequencies and rotation deviation curves are utilized as input to the soft computing technique. Both single and multiple damage cases are considered. Theoretical expressions leading to modal properties of damaged beam elements are provided. The beam formulation is based on Euler-Bernoulli theory. The cracked section of beam is simulated employing discrete spring model whose compliance is computed from stress intensity factors of fracture mechanics. A hybrid neuro fuzzy technique is utilized to solve the inverse problem of crack identification. Two different neuro fuzzy systems including grid partitioning (GP) and subtractive clustering (SC) are investigated for the highlighted problem. Several error metrics are utilized for evaluating the accuracy of the hybrid algorithms. The study is the first in terms of 1) using the two models of neuro fuzzy systems in crack detection and 2) considering multiple damages in beam elements employing the fused neuro fuzzy procedures. At the end of the study, the developed hybrid models are tested by utilizing the noise-contaminated data. Considering the robustness of the models, they can be employed as damage identification algorithms in health monitoring of beam-like structures.