References
- Abonyi, J., Andersen, H.C., Nagy, L. and Szeifert, F. (1999), "Inverse fuzzy process model based direct adaptive control", Math. Comput. Simulat., 51(1-2), 119-132. https://doi.org/10.1016/S0378-4754(99)00142-1
- Altug, S., Chen, M.Y. and Trussell, H.J. (1999), "Fuzzy inference systems implemented on neural architectures for motor fault detection and diagnosis", IEEE T. Ind. Electron., 46(6), 1069-1079. https://doi.org/10.1109/41.807988
- Aydin, K. and Kisi, O. (2015), "Applicability of fuzzy genetic system for crack diagnosis in Timoshenko beams", J. Comput. Civil Eng.-ASCE, 29(5), in press.
- Babu, T.R. and Sekhar, A.S. (2008), "Detection of two cracks in a rotor-bearing system using amplitude deviation curve", J. Sound Vib., 314(3-5), 457-464. https://doi.org/10.1016/j.jsv.2008.03.011
- Bakhary, N. (2008), Structural condition monitoring and damage identification with artificial neural network, Ph.D. Dissertation, University of Western Australia, Perth, WA, Australia.
- Barai, S.V. and Pandey, P.C. (1995), "Vibration signature analysis using artificial neural networks", J. Comput. Civil Eng.-ASCE, 9(4), 259-265. https://doi.org/10.1061/(ASCE)0887-3801(1995)9:4(259)
- Caddemi, S. and Morassi, A. (2013), "Multi-cracked Euler-Bernoulli beams: Mathematical modeling and exact solutions", Int. J. Solids Struct., 50, 944-956. https://doi.org/10.1016/j.ijsolstr.2012.11.018
- Carden, P.E. and Fanning, P. (2004), "Vibration based condition monitoring: A review", Struct. Health Monit., 3(4), 355-377. https://doi.org/10.1177/1475921704047500
- Chang, C.C., Chang, T.Y.P. and Xu, Y.G. (2000), "Structural damage detection using an iterative neural network", J. Intel. Mat. Syst. Str., 11, 32-42. https://doi.org/10.1177/104538900772664387
- Chen, J., Roberts, C. and Weston, P. (2008), "Fault detection and diagnosis for railway track circuits using neuro-fuzzy systems", Control Eng. Pract., 16(5), 585-596. https://doi.org/10.1016/j.conengprac.2007.06.007
- Chiu, S. (1994), "Fuzzy model identification based on cluster estimation", J. Intel. Fuzzy Syst., 2, 267-278. https://doi.org/10.1109/91.324806
- Choi, F.C., Li, J., Samali, B. and Crews, K. (2008), "Application of the modified damage index method to timber beams", Eng. Struct., 30(4), 1124-1145. https://doi.org/10.1016/j.engstruct.2007.07.014
- Cobaner, M. (2011), "Evapotranspiration estimation by two different neuro-fuzzy inference systems", J. Hydrol., 398(3-4), 292-302. https://doi.org/10.1016/j.jhydrol.2010.12.030
- Czogaa, E., Czogala, E. and Leski, J. (2000), Fuzzy and Neuro-Fuzzy Intelligent Systems, Springer-Verlag, Heidelberg.
- Dackermann, U. (2010), "Vibration-based damage identification methods for civil engineering structures using artificial neural networks", Ph.D. Dissertation, University of Technology, Sydney, Australia.
- Dempsey, P. and Afjeh, A. (2004), "Integrated oil debris and vibration gear damage detection technologies using fuzzy logic", J. Am. Helicopter Soc., 49, 109-116. https://doi.org/10.4050/JAHS.49.109
- Dimarogonas, A.D. (1996), "Vibration of cracked structures: A state of the art review", Eng. Fract. Mech., 55, 831-857. https://doi.org/10.1016/0013-7944(94)00175-8
- Drake, J.T. (2000), Communications phase synchronization using the adaptive network fuzzy inference system, Ph.D. Dissertation, New Mexico State University, Las Cruces, New Mexico.
- Du, J. and Er, M.J. (2004), "Fault diagnosis in air-handling unit system using dynamic fuzzy neural network", Proceedings of the 6th International FLINS Conference, Blankenberge, Belgium, September.
- Fan, W. and Qiao, P. (2011), "Vibration-based damage identification methods: A review and comparative study", Struct. Health Monit., 10(1), 83-111. https://doi.org/10.1177/1475921710365419
- Fang, X., Luo, H. and Tang, J. (2005), "Structural damage detection using neural network with learning rate improvement", Comput. Struct., 83(25-26), 2150-2161. https://doi.org/10.1016/j.compstruc.2005.02.029
- Friswell, M.I. and Penny, J.E.T. (2002), "Crack modeling for structural health monitoring", Struct. Health Monit., 1(2), 139-148. https://doi.org/10.1177/1475921702001002002
- Ganguli, R. (2001), "A fuzzy logic system for ground based structural health monitoring of a helicopter rotor using modal data", J. Intell. Mat. Syst. Str., 12(6), 397-407. https://doi.org/10.1106/104538902022598
- Garesci, F., Catalano, L. and Petrone, F. (2006), "Experimental results of a damage detection methodology using variations in modal parameters", Exp. Mech., 46, 441-451. https://doi.org/10.1007/s11340-006-8151-4
- Gonzalez, M.P. and Zapico, J.L. (2008), "Seismic damage identification in buildings using neural networks and modal data", Comput. Struct., 86(3-5), 416-426. https://doi.org/10.1016/j.compstruc.2007.02.021
- Hamey, C.S., Lestari, W., Qiao, P. and Song, G. (2004), "Experimental damage identification of carbon/epoxy composite beams using curvature mode shapes", Struct. Health Monit., 3(4), 333-353. https://doi.org/10.1177/1475921704047502
- Haykin, S. (1998), Neural Networks - A Comprehensive Foundation, Prentice-Hall, Upper Saddle River, New Jersey.
- Jang, J.S.R. (1993), "ANFIS: adaptive-network-based fuzzy inference system", IEEE T. Syst. Man Cyb., 23(3), 665-685. https://doi.org/10.1109/21.256541
- Jang, J.S.R., Sun, C.T. and Mizutani, E. (1997), Neoro-Fuzzy and Soft Computing, Prentice Hall, Upper Saddle River, New Jersey.
- Kao, C.Y. and Hung, S.L. (2005), "A neural network-based approach for detection of structural damage", Proceedings of the 16th IASTED Conference on Modeling and Simulation, Cancun, Mexico, May.
- Karunanithi, N., Grenney, W.J., Whitley, D. and Bovee, K. (1994), "Neural networks for river flow prediction", J. Comput. Civil Eng.-ASCE, 8(2), 201-220. https://doi.org/10.1061/(ASCE)0887-3801(1994)8:2(201)
- Kim, B.H., Park, T. and Voyiadjis, G.Z. (2006), "Damage estimation on beam-like structures using the multi-resolution analysis", Int. J. Solids Struct., 43(14-15), 4238-4257. https://doi.org/10.1016/j.ijsolstr.2005.07.022
- Kisi, O. (2006), "Daily pan evaporation modeling using a neuro-fuzzy computing technique", J. Hydrol., 329(3-4), 636-646. https://doi.org/10.1016/j.jhydrol.2006.03.015
- Lauwagie, T., Sol, H. and Dascotte, E. (2002), "Damage identification in beams using inverse methods", Proceedings of the International Seminar on Modal Analysis (ISMA), Leuven, Belgium, Sptember.
- Lei, Y., He, Z. and Zi, Y. (2008), "A new approach to intelligent fault diagnosis of rotating machinery", Expert Syst. Appl., 35(4), 1593-1600. https://doi.org/10.1016/j.eswa.2007.08.072
- Li, H., Yang, H. and Hu, S.L.J. (2006), "Modal strain energy decomposition method for damage localization in 3D frame structures", J. Eng. Mech.-ASCE, 132(9), 941-951. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:9(941)
- Li, Q.S. (2001), "Buckling of multi-step cracked columns with shear deformation", Eng. Struct., 23, 356-364. https://doi.org/10.1016/S0141-0296(00)00047-X
- Marseguerra, M., Zio, E. and Avogadri, P. (2004), "Model identification by neuro-fuzzy techniques: predicting the water level in a steam generator of a PWR", Prog. Nucl. Energ., 44(3), 237-252. https://doi.org/10.1016/S0149-1970(04)90012-1
- Nanda, B., Maity, D. and Maiti, D.K. (2012), "Vibration-based structural damage detection technique using particle swarm optimization with incremental swarm size", Int. J. Aeronaut. Space Sci., 13(3), 323-331. https://doi.org/10.5139/IJASS.2012.13.3.323
- Ni, Y.Q., Zhou, X.T., Ko, J.M. and Wang, B.S. (2000), "Vibration based damage localization in Ting Kau Bridge using probabilistic neural network", Adv. Struct. Dyn., 2, 1069-1076.
- Nyongesa, H.O., Otieno, A.W. and Rosin, P.L. (2001), "Neural fuzzy analysis of delaminated composites from shearography imaging", Compos. Struct., 54(2-3), 313-318. https://doi.org/10.1016/S0263-8223(01)00103-9
- Oruganti, K., Mehdizadeh, M., John, S. and Herszberg, I. (2009), "Vibration-based analysis of damage in composites", Mater. Forum., 33, 496-504.
- Pawar, P.M. and Ganguli, R. (2005), "Matrix cracking detection in thin-walled composite beam using genetic fuzzy system", J. Intell. Mat. Syst. Str., 16(5), 381-468.
- Pawar, P.M. and Ganguli, R. (2011), Structural Health Monitoring Using Genetic Fuzzy Systems, Springer-Verlag, London.
- Ramu, S. and Johnson, V. (1995), "Damage assessment of composite structures using fuzzy logic integrated neural-network approach", Comput. Struct., 57, 491-502. https://doi.org/10.1016/0045-7949(94)00624-C
- Saadat, S.A., Buckner, G.D. and Noori, M.N. (2007), "Structural system identification and damage detection using the intelligent parameter varying technique: An experimental study", Struct. Health Monit., 6(3), 231-243. https://doi.org/10.1177/1475921707081980
- Saeed, R.A., Galybin, A.N. and Popov, V. (2012), "Crack identification in curvilinear beams by using ANN and ANFIS based on natural frequencies and frequency response functions", Neural Comput. Appl., 21(7), 1629-1645. https://doi.org/10.1007/s00521-011-0716-1
- Saeed, R.A. and George, L.E. (2011), "The use of ANN for cracks predictions in curvilinear beams based on their natural frequencies and frequency response functions", J. Comput., 3(12), 113-125.
- Sahin, M. and Shenoi, R.A. (2003), "Vibration-based damage identification in beam-like composite laminates by using artificial neural networks", J. Mech. Eng. Sci., 217(6), 661-676. https://doi.org/10.1243/095440603321919581
- Sawyer, J. and Rao, S. (2000), "Structural damage detection and identification using fuzzy logic", AIAA J., 38, 2328-2335. https://doi.org/10.2514/2.902
- Shi, Z.Y., Law, S.S. and Zhang, L.M. (2000), "Damage localization by directly using incomplete mode shapes", J. Eng. Mech.-ASCE, 126(6), 656-660. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:6(656)
- Shim, M.B. and Suh, M.W. (2002), "Crack identification using neuro-fuzzy-evolutionary technique", KSME Int. J., 16(4), 454-467. https://doi.org/10.1007/BF03185075
- Sinha, J.K., Friswell, M.I. and Edwards, S. (2002), "Simplified models for the location of cracks in beam structures using measured vibration data", J. Sound Vib., 251(1), 13-38. https://doi.org/10.1006/jsvi.2001.3978
- Soh, C. and Bhalla, S. (2005), "Calibration of piezo-impedance transducers for strength prediction and damage assessment of concrete", Smart Mater. Struct., 14, 671-684. https://doi.org/10.1088/0964-1726/14/4/026
- Sohn, H., Farrar, C.R., Hemez, F.M., Shunk, D.D., Stinemates, D.W. and Nadler, B. R. (2004), A review of structural health monitoring literature: 1996-2001, Los Alamos National Laboratory Report No. LA-13976-MS, Los Alamos, New Mexico.
- Su, Z. and Ye, L. (2004), "Lamb wave-based quantitative identification of delamination in CF/EP composite structures using artificial neural algorithm", Compos. Struct., 66(1-4), 627-637. https://doi.org/10.1016/j.compstruct.2004.05.011
- Thatoi, D.N., Ojha, A.A., Bhanjadeo, A., Mahapatra, R., Sahoo, S. and Mohapatra, S. (2013), "Application of artificial intelligence techniques for detection of cracks-A review", IACSIT Int. J. Eng. Tech., 5(1), 57-59.
- Tran, V.T., Yang, B.S., Oh, M.S. and Tan, A.C.C. (2009), "Fault diagnosis of induction motor based on decision trees and adaptive neuro-fuzzy inference", Expert Syst. Appl., 36(2), 1840-1849. https://doi.org/10.1016/j.eswa.2007.12.010
- Tsou, P. and Shen, H.M.H. (1994), "Structural damage detection and identification using neural networks", AIAA J., 32(1), 176-183. https://doi.org/10.2514/3.11964
- Vieira, J., Dias, F.M. and Mota, A. (2004), "Artificial neural networks and neuro-fuzzy systems for modeling and controlling real systems: a comparative study", Eng. Appl. Artif. Intel., 17, 265-273. https://doi.org/10.1016/j.engappai.2004.03.001
- Vinayak, H.K., Kumar, A., Agarwal, P. and Thakkar, S.K. (2008), "NN based damage detection from modal parameter changes", Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, China, October.
- Wang, J.H. and Chuang, S.C. (2004), "Reducing errors in the identification of structural joint parameters using error functions", J. Sound Vib., 273(1-2), 295-316. https://doi.org/10.1016/S0022-460X(03)00502-9
- Weaver, W., Timoshenko, S.P. and Young, D.H. (1990), Vibration Problems in Engineering. Wiley, New York.
- Wei, M., Bai, B., Sung, A.H., Liu, Q., Wang, J. and Cather, M.E. (2007), "Predicting injection profiles using ANFIS", Inform. Sci., 177, 4445-4461. https://doi.org/10.1016/j.ins.2007.03.021
- Wu, X., Ghaboussi, J. and Garrett, J.H. (1992), "Use of neural networks in detection of structural damage", Comput. Struct., 42, 649-659. https://doi.org/10.1016/0045-7949(92)90132-J
- Yager, R.R. and Filev, D.P. (1994). Essentials of Fuzzy Modeling and Control, John Wiley & Sons, New York.
- Yan, Y., Cheng, L., Wu, Z. and Yam, L. (2007), "Development in vibration-based structural damage detection technique", Mech. Syst. Signal Pr., 21, 2198-2211. https://doi.org/10.1016/j.ymssp.2006.10.002
- Ye, Z., Sadeghian, A. and Wu, B. (2006), "Mechanical fault diagnostics for induction motor with variable speed drives using adaptive neuro-fuzzy inference system", Electr. Pow. Syst. Res., 76, 742-752. https://doi.org/10.1016/j.epsr.2005.10.011
- Zadeh, L.A. (1996), "Fuzzy logic = computing with words", IEEE T. Fuzzy Syst., 4(2), 103-111. https://doi.org/10.1109/91.493904
- Zang, C. and Imregun, M. (2001a), "Combined neural network and reduced FRF techniques for slight damage detection using measured response data", Arch. Appl. Mech., 71(8), 525-536. https://doi.org/10.1007/s004190100154
- Zang, C. and Imregun, M. (2001b), "Structural damage detection using artificial neural networks and measured FRF data reduced via principal component projection", J. Sound Vib., 242(5), 813-827. https://doi.org/10.1006/jsvi.2000.3390
- Zapico, J.L., Gonzalez, M.P. and Worden, K. (2003), "Damage assessment using neural network", Mech. Syst. Signal Pr., 17(1), 119-125. https://doi.org/10.1006/mssp.2002.1547
- Zhao, Z. and Chen, C. (2002), "A fuzzy system for concrete bridge damage diagnosis", Comput. Struct., 80, 629-641. https://doi.org/10.1016/S0045-7949(02)00031-7
- Zio, E. and Gola, G. (2006), "Neuro-fuzzy pattern classification for fault diagnosis", Ann. Nucl. Energy, 33, 415-426. https://doi.org/10.1016/j.anucene.2005.12.008
- Zio, E. and Gola, G. (2009), "A neuro-fuzzy technique for fault diagnosis and its application to rotating machinery", Reliab. Eng. Syst. Safe., 94, 78-88. https://doi.org/10.1016/j.ress.2007.03.040
Cited by
- Approach to establish a hybrid intelligent model for crack diagnosis in a fix-hinge beam structure pp.1757-9864, 2019, https://doi.org/10.1108/IJSI-05-2018-0029
- An integral based fuzzy approach to evaluate waste materials for concrete vol.19, pp.3, 2015, https://doi.org/10.12989/sss.2017.19.3.323
- Fuzzy rule based seismic risk assessment of one-story precast industrial buildings vol.18, pp.3, 2015, https://doi.org/10.1007/s11803-019-0526-5
- Micro-mechanical damage diagnosis methodologies based on machine learning and deep learning models vol.22, pp.8, 2015, https://doi.org/10.1631/jzus.a2000408